Improper installation can cause equipment damage, personal injury or death. Before beginning installation, please read this publication in its entirety. Develop a thorough understanding before starting the installation procedure. This manual is to be used as a guide. Each installation is unique, so only general topics are covered. The order in which topics are covered may not be those required for the actual installation.
Contents

Safety Information ... 3
Receiving, Handling, and Storage 4
 Important Information 4
 Transportation Damage 4
 Equipment Storage .. 4
 Lifting and Moving .. 4
Stacking ... 5
 Louver Cartons .. 5
 Wall Sleeve Cartons 5
 Unit Cartons ... 5
Typical Self-Contained Floor Unit, Wall Sleeve, Louver Components 6

Step 1 – Wall Opening Procedure 7
 Cutting Exterior Wall Opening 8
 Cutting Interior Wall Opening 8
Step 2 – Installing Louver 10
 Louver Installation Considerations 11
 Typical Installation Methods 11
 Top Plan Views – No Recess (Full Projection) 13
 Top Plan Views – Partial or Full Recess 14
 Louvers Without Flanges 15
 Louvers With Flange 17
Step 3 – Installing Wall Sleeve 18
 Typical Wall Sleeve Applications 20
 Unit Room Projection & Splitter Length Details 21
 General Considerations 22
 Recessed Applications 23
 Full Projection Applications 24
 Typical Field Assembled Cross-Over Piping Considerations 26
Step 4 – Wall Sleeve Electrical Connections 27
 Procedure – Main Power Connections 27
 Wall Sleeve Electrical Stub-up Details 28
 Unit Connection Procedure to Wall Sleeve 29
Step 5 – Installing the Unit Ventilator 31
 Before Moving Unit Up to Wall Opening Checklist . 32
Step 6 – Making Piping Connections 36
 In All Systems ... 36
 Water Coil Connections 36
 AZU and AZQ Hot Water Coil Connection Locations .. 37
 AZR Hot Water Coil Connection Locations 38
 AZU, AZR, and AZQ Steam Coil Connection Locations .. 39
 Model AZQ Valves and Piping – Typical 40
 Mounting End of Cycle Valves 42
 Hot Water Modulating Valve Piping 50
 Steam Modulating Valve Piping 51
 Condensate Piping .. 51
Step 7 – Unit Electrical and Control 52
 MicroTech Wiring Diagram – Typical 57
 MicroTech Unit Mounted DDC Control Components 59
 MicroTech Control Components 61
 Economizer Control Capabilities 61
 MicroTech Wall Mounted Sensors 62
 Typical Connections For Temperature Sensor Applications 63
 Electro Mechanical Control Components -
 Model AZU, AZR ... 66
 Electro Mechanical Control Components -
 Model AZV, AZU, AZR 67
Step 8 – Installing End Panel 68
 End Panel Dimensions 68
 End Panel Assembly 69
Step 9 – Installing VentiMatic™ Shutter 70
 VentiMatic™ Shutter Assembly 70
Step 10 – Prepare Unit Ventilator for Start-up 71
 Post Installation Checklist 71
 Filter(s) .. 71
Step 11 – Complete Check, Test and Start Procedure 72
Nomenclature .. 73
 Check, test & start procedure for Unit Ventilators 74
Recognize safety information. When you see a safety symbol on the unit or in these instructions, be alert to the potential for personal injury. Understand the meanings of the words DANGER, WARNING, and CAUTION.

DANGER identifies the most serious hazards that will result in death or severe personal injury.

DANGER
Disconnect all electrical power before servicing unit to avoid injury or death due to electrical shock.

WARNING means the hazards can result in death or severe personal injury.

WARNING
Hazardous Voltage!
Disconnect all electric power including remote disconnects before servicing. Failure to disconnect power before servicing can cause severe personal injury or death.

CAUTION identifies unsafe practices that can result in personal injury or product and property damage.

CAUTION
Use copper conductors only. Unit terminals are not designed to accept other types of conductors. Failure to do so can cause damage to the equipment.

Improper installation, adjustment, service, maintenance, or use can cause, fire, electrical shock, or other conditions which can result in personal injury or property damage. This product must be installed only by personnel with the training, experience, skills, and applicable licensing that makes him/her “a qualified professional HVACR installer.”

Follow all applicable safety codes. Wear safety glasses and work gloves. Use a quenching cloth for brazing operations. Have a fire extinguisher available. Follow all warnings and cautions in these instructions and attached to the unit. Consult applicable local building codes and National Electrical Codes (NEC) for special requirements.

CAUTION
Installation and maintenance are to be performed only by qualified personnel who are familiar with and in compliance with state, local and national codes and regulations, and experienced with this type of equipment. Sharp edges and coil surfaces are a potential injury hazards. Avoid contact with them.

WARNING
During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. A qualified licensed electrician or other technician trained and experienced in live electrical components should perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components can result in death or severe injury.
Important Information

Made in the U.S.A., pride and workmanship go into every Daikin Model AZ self-contained unit ventilator to provide our customers with quality products. Products should be installed and serviced only by qualified installers and service technicians familiar with and in compliance with state, local and national codes and regulations, and experienced with this type of equipment. This installation manual is designed to help with the installation and start-up.

Transportation Damage

Items supplied by Daikin may include louvers, wall sleeve, Model AZ unit and accessories. Each item has been carefully inspected and securely packed in a Daikin-approved carton at the factory. In addition, each Model AZ unit has been operated at the factory to verify proper performance. The carrier checked the items when the shipment was loaded and assumed responsibility for damage or loss upon acceptance of the shipment.

The purchaser is responsible for filing the necessary claims with the carrier. Check each carton upon arrival for external damage or shortages. Note any damage or shortage and any damage on all copies of the freight bill. If damage or shortages are found, the consignee should:

1. Note any visible damage to the shipment or container on all copies of the delivery receipt and have it signed by the carrier’s agent. Failure to adequately describe such external evidence of a loss or damage may result in the carrier refusing to honor a claim.
2. Notify carrier promptly with a written request for an inspection.
3. In case of concealed loss or damage, or damage and/or loss that does not become apparent until the product has been unpacked, notify the carrier as soon as possible, preferably within five (5) days and no later than 15 days.
4. File the claim within the six (6) month statute of limitations of the carrier with the following supporting documents:
 a. Original Bill of Lading, certified copy, or indemnity bond.
 b. Original paid freight bill or indemnity in lieu thereof.
 c. Original invoice, or a certified copy thereof, showing trade and other discounts or reductions.
 d. Copy of the inspection report issued by carrier’s representative at the time damage is reported to the carrier.

The carrier is responsible for making prompt inspection of damage and for providing a thorough investigation of each claim. Daikin will not accept claims for transportation damage.

To help avoid concealed damage:

5. Lay the louvers on their side for shipping, handling and storage. Do not stack louver more than 10 high. See Figure 2 on page 5.
6. Do not stack wall sleeves more than 2 high. See Figure 3 on page 5.

Model AZ unit ventilators must be shipped, handled and stored right-side up. Do not stack units more than two (2) high. See Figure 4 on page 5.

NOTICE

Daikin louvers, wall sleeves, Model AZ units and accessories are carefully packed and thoroughly inspected before leaving the factory. The carrier assumed responsibility for damage or loss upon acceptance of the shipment. Claims for loss or damage sustained in transit must be made upon the carrier as follows:

VISIBLE LOSS OR Damage

Any external evidence of loss or damage must be noted on the freight bill or carrier’s receipt and signed by the carrier’s agent. Failure to adequately describe such external evidence of loss or damage may result in the carrier’s refusing to honor a damage claim. The form required to file a claim will be supplied by the carrier.

CONCEALED LOSS OR DAMAGE

For concealed loss or damage (damage and/or loss that does not become apparent until the product has been unpacked), make a written request for inspection by the carrier’s agent within fifteen (15) days of the delivery date. File a claim with the carrier since such damage is the carrier’s responsibility.

Equipment Storage

If equipment is stored for any length of time before installation, it should remain in its shipping packaging in a clean, dry, climate controlled area. For extended storage times, rotate indoor fan motor and outdoor fan/motor assemblies periodically to prevent flattening of the bearing.

Lifting and Moving

A forklift with 72” tines, or other lifting device is needed to move these products (Figure 1).

Move the louver, wall sleeve, or unit to the location at which it is to be installed before uncrating. Check tagging on carton to confirm that the item is correct for the location. The carton for the unit is imprinted with the Daikin trademark which is the “front” or room side of the unit. The end of the unit carton marked “Truck From This End” should be on the right-hand side when facing the front of the carton.

Forklift-type vehicles may be used to unload and move the cartons. When using a forklift, it is important that the products remain banded to its skid and be lifted only from the end designated on the carton (Figure 5 on page 5). Move only one unit at a time. Do not drop unit.

CAUTION

Use 72” length forklift tines. Short tines will damage the unit bottom. Improper handling can damage internal components

Figure 1: Forklift Lifting Requirements
Louver Cartons

Figure 2: Stack louvers maximum 10 high as shown

Correct

Incorrect

Wall Sleeve Cartons

Figure 3: Stack wall sleeve maximum 2 high as shown

Correct

Incorrect

Unit Cartons

Figure 4: Stack units maximum 2 high as shown

Correct

Incorrect

Complete Installation Procedure Summary

- Read this manual in its entirety and understand the installation procedures
- Wall opening cut
- Lintel(s) in place to support masonry wall over opening
- Electrical and control wiring roughed in
- Rough opening envelope smooth and sealed
- Position of louver marked for mounting to wall opening
- Position of wall sleeve marked where it extends and at points where mounts to wall and floor
- Splitters fabricated
- Metal flashing in place or sealed sloped mortar bed for drainage from wall sleeve “D” seal channel to bottom of louver
- Louver installed and sealed at bird screen toward wall sleeve
- Splitter(s) enclosures installed and sealed to louver
- Wall sleeve installed and sealed air and water tight
- Splitters attached to wall sleeve and sealed
- Electrical run and control wiring connections made to wall sleeve junction box
- Interior wall finished
- Shut-off valves installed below floor grade for water or steam
- Unit Installed

Figure 5: Unit package dimensions

Table 1: Shipping carton dimensions & weights

<table>
<thead>
<tr>
<th>Model AZ</th>
<th>“A”</th>
<th>“B”</th>
<th>“C”</th>
<th>Shipping Weight</th>
<th>Loading (L x W x H)</th>
<th>Truckload Quantity of Identical Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>107”</td>
<td>31”</td>
<td>39”</td>
<td>885 lbs.</td>
<td>5’ x 3’ x 2’</td>
<td>30</td>
</tr>
<tr>
<td>036</td>
<td>107”</td>
<td>31”</td>
<td>39”</td>
<td>975 lbs.</td>
<td>5’ x 3’ x 2’</td>
<td>30</td>
</tr>
<tr>
<td>044, 054</td>
<td>119”</td>
<td>31”</td>
<td>39”</td>
<td>1075 lbs.</td>
<td>4’ x 3’ x 2’</td>
<td>24</td>
</tr>
</tbody>
</table>

Note: All dimensions are approximate only and are subject to change without notice. Refer to approved submittal prints for rough-in details and construction purposes and for recommended wall opening size.
Carefully arrange the location and installation of each model AZ unit to provide convenient service access for maintenance and, if necessary, removal of the unit. The installation consists of four basic elements in the following order:

1. Louver
2. Galvanized Wall Sleeve
3. Horizontal Air Splitters by others (if required)
4. AZ Self-Contained Unit Ventilator

The louver brings in outdoor air for the condenser fan section and ventilation air to the classroom while providing a path for heated condenser air to exit.

The Wall Sleeve secures the unit, provides a watertight and air tight seal to the building and brings in electrical and control wiring (if required). It contains the unit main power disconnect switch which is located in the wall sleeve junction box. All field electrical connections are made inside this box.

Horizontal Air Splitters provide proper air paths and minimize air recirculation.

The AZ self-contained unit ventilator provides comfort cooling and heating for the space. The Model AZ unit is designed to be installed into or up against an inside wall. The louver, air splitters (if required) and wall sleeve are installed before the AZ unit is installed.

On many jobs, the louver and wall sleeve are shipped ahead of the unit itself. Installation instructions for these components are shipped with the individual components included in this publication.
An opening in the outside wall is required to accommodate the wall sleeve and louver. The wall opening must be of sufficient size to allow proper fit of the louver and will depend on the type of wall. National and local codes for building construction must be followed and may supersede the suggested methods in this manual.

Locating Wall Opening (Existing Building)

The first step in the installation is to carefully locate the area of interior and exterior wall to be removed. Determine the appropriate location on the interior wall where the unit ventilator is to be installed. Using the rear edge of the wall sleeve as a guide, mark the interior wall surface for the rough-in wall sleeve opening 1/4” larger at each end than the wall sleeve recess dimension, and 1/4” higher (see Table 3 on page 9). In all cases, the bottom of the outdoor louver opening must be at the same height as the floor line.

For non-recessed installations, (full projection), mark the position of the wall sleeve on the interior wall surface with the wall mount flanges removed to help determine the location of the outdoor wall surface rough opening.

Transfer the interior wall opening dimensions to the exterior wall surface, being certain the opening is 1/4” larger at each end than the wall sleeve recess dimension, and 1/4” higher.

CAUTION

Unit ventilators use fresh air to condition the interior space. Obstructions near the louver wall opening must be removed to allow free flow of entering and discharge air. Building and vehicle exhaust, etc., near the louver intake must be identified and eliminated.

NOTICE

Wall and floor must be at 90° to one another. If not, the floor must be leveled (90°) to wall.
Cutting Exterior Wall Opening

The wall opening must be of sufficient size to allow proper, yet snug, fit of the louver and will depend on the type of wall. If the louver is to be installed in a masonry wall, install a lintel to support the wall above the wall sleeve and louver. Install a sleeve to prevent moisture from seeping into the wall interior. Refer to approved submittal prints for recommended rough wall opening size.

CAUTION

Read louver and wall sleeve installation sections before proceeding (page 8- page 26). Improper installation can result in property damage.

The following is a typical procedure for installing in existing masonry walls. Follow local codes and safety procedures.

If the Model AZ unit is to be installed in an existing classroom, an opening must be cut in the outside wall to accommodate the wall sleeve and louver. This is accomplished as follows: First, the outside of the masonry wall is cut with a carborundum or other suitable blade as shown in Figure 10. This opening should be 1/2" larger overall than the size of the louver supplied with the unit (see Figure 10 & Table 2).

Figure 10: Cutting the outside wall rough opening slightly larger than the size of the louver

Table 2: Recommended rough-in dimensions for louver
with or without flanges (exterior wall)

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>84½</td>
<td>2140</td>
</tr>
<tr>
<td>036</td>
<td>96½</td>
<td>2444</td>
</tr>
<tr>
<td>044</td>
<td>108½</td>
<td>2747</td>
</tr>
</tbody>
</table>

Note: See louver installation section. Dimensions are approximate and are dictated by job site conditions.

CAUTION

Horizontal splitters (by others) must be installed whenever there is space between the wall sleeve and the louver. Seal the ends of the wall opening. Pitch splitters toward the louver for water drainage (see sealing wall sleeve and horizontal splitters, page 23 & page 25).

Cutting Interior Wall Opening

Next, the interior wall is cut as shown in Figure 12. If any portion of the wall sleeve is to be recessed into the wall, the opening must be large enough to accommodate the wall sleeve (see Table 3 on page 9). In all cases, the bottom of the wall opening must be at the same height as the floor line. Seal the floor of the wall opening to permit water to drain under the louver and away from the building interior. If the building is a panel wall, the sleeve will be nonrecessed (full projection) and all of the unit will remain in the room.

Figure 12: The interior wall opening is cut
Table 3: Recommended rough-in wall opening for wall sleeve

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Wall Sleeve w/Flange Length</th>
<th>Sleeve (Recessed) Length</th>
<th>Recommended Rough-in Wall Opening Length</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>86" (2184mm)</td>
<td>84" (2145mm)</td>
<td>84 1/2" (2146mm)</td>
<td>28 1/2" (724mm)</td>
</tr>
<tr>
<td>036</td>
<td>98" (2489mm)</td>
<td>96" (2489mm)</td>
<td>96 1/2" (2451mm)</td>
<td>28 1/2" (724mm)</td>
</tr>
<tr>
<td>044, 054</td>
<td>110" (2794mm)</td>
<td>108" (2755mm)</td>
<td>108 1/2" (2756mm)</td>
<td>28 1/2" (724mm)</td>
</tr>
</tbody>
</table>

The interior wall is then knocked out in the area cut for the wall sleeve as shown in Figure 13.

Figure 13: The interior wall is knocked out in the area cut for the wall sleeve

If the wall consists of concrete block with brick (or other) veneer and the louver opening is smaller than the opening of the wall sleeve (which is to be recessed), be careful to knock out only the veneer that is necessary.

After the opening is finished (Figure 14), a lintel must be installed above the opening in masonry walls to support the remaining block and brick (Figure 15). The wall must contain a solid surface or an internal column at each end for bracing and anchoring the wall sleeve and louver (by others).

CAUTION

Shut-off valves for hot water and steam must be flush with the floor to allow unit installation and removal (see piping arrangements, page 43).

CAUTION

The wall opening must be sealed and made watertight. See the louver, splitter and wall sleeve installation sections

New Buildings

In new construction, if any portion of the wall sleeve is to be recessed into the wall, the opening must be large enough to accommodate the wall sleeve (see Table 3). For smaller wall thickness, the wall sleeve will be nonrecessed (full projection) and all of the unit will project into the room. In all cases, the bottom of the wall opening must be at the same height as the floor line. A lintel must be installed above the opening in masonry walls to support the block and brick. The wall must contain a solid surface or an internal column at each end for bracing and anchoring the wall sleeve and louver (by others).
Louver Details

Note: Please refer to "Transportation Damage" on page 4 for information on receiving, inspection, and filing claims for damage or loss with the carrier, and handling items supplied by Daikin.

Figure 16: Typical wall louver and grille

Figure 19: Grille detail

Table 4: Wall louver dimensions

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Louver Size (Height x W)</th>
<th>Discharge Air Opening (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>28” × 84” (711 × 2134)</td>
<td>9” (229mm)</td>
</tr>
<tr>
<td>036</td>
<td>28” × 96” (711 × 2438)</td>
<td>9” (229mm)</td>
</tr>
<tr>
<td>044, 054</td>
<td>28” × 108” (711 × 2743)</td>
<td>7” (178mm)</td>
</tr>
</tbody>
</table>

Note: All dimensions are approximate and subject to change without notice. Refer to approved submittal prints for rough-in details and construction purposes, and for recommended wall opening size.

Figure 20: Vertical blade louver, without flange

Inside View

CAUTION

Locate Drain Lip at bottom of vertical louver to allow proper drainage. Bird screen should always be on side toward unit.
Louver Installation Considerations

The standard louver is an aluminum, vertical, divided blade design complete with bird screen. This louver is also available with flanges and/or with a heavy-duty exterior lattice grille.

CAUTION

Louvers by Daikin provide proper airflow. Proper unit performance has not been verified with louver by others.

1. **Figure 17 & Figure 20 on page 10** show detail of a typical louver. Before installation, carefully examine the louver and note the location of the bird screen and the notches (drain holes). The louver must be installed with the small opening at the top, notches at the bottom and the bird screen toward the room. If the louver is to be installed in a masonry wall, there must also be a lintel to support the existing wall above the louver.

2. Measure the opening to be sure there is adequate clearance for the louver around the sides. Observe the opening in relation to the wall sleeve and unit. For proper unit operation, the louver must be centered left to right and top to bottom to the wall sleeve. If the louver is of such a dimension that it extends above, below, or beyond the wall sleeve, then these areas must be blocked off airtight (Figure 21).

Figure 21: Oversize wall opening

3. If the wall sleeve does not extend into the wall far enough to meet the louver, field fabricated splitter(s) must be provided. The splitter(s) need to extend far enough to engage the louver in order to form a proper seal (see "Unit Room Projection & Splitter Length Details" on page 21).

Figure 22: Typical field fabricated splitters

4. Check to see if the horizontal divider on the louver is the same height as the top horizontal splinter rail of the wall sleeve. The louver frame must be permanently mounted in the wall.

5. Before installing the louver in the opening, place a heavy bead of caulk along the top and two sides of the frame that come in contact with the walls of the opening. Use a flexible, waterproof caulk such as silicone.

6. Once the louver has been placed in the opening, further mechanical fastening may be desired or required. Fasten in a manner appropriate to the installation (see "Typical Installation Methods" on page 11). Care must be taken if fasteners are to be placed in the frame. If this is necessary, remove the louver by removing the screws that hold it in place. Drill holes in the desired locations and fasten with flat head screws. Be sure these screws do not interfere with the reinstallation. Shims must be placed between the louver and the wall so it won't be distorted. After the louver has been properly positioned, secure with fasteners.

 In masonry wall applications, the louver may be permanently mounted by placing mortar around the top and sides in order to prevent it from being removed. Mortar keys may be attached to the louver, if necessary.

Typical Installation Methods

If the outside opening has not yet been made, see **Figure 23 on page 12** through **Figure 26** for the recommended locations and the job-specific plans for the exact location. Follow national and local codes.

Wall Opening

Cut the wall opening so that it is slightly larger than the louver being installed (see **Table 3 on page 9**). For dimensions, see **Table 5 on page 13**. If the opening is already there, measure to be sure there is a minimum of 3/8” (9mm) clearance around all sides. For masonry installations, follow national and local codes and install a lintel above all louvers.

Outside Air Plenum

In thick wall applications, the portion of the wall between the louver and the unit is the outside air plenum. Line this plenum area with 3/8” (9 mm) sealed cement mortar or other suitable material. In some applications, the job specifications require a metal sleeve connection between the louver and the unit. If using such a sleeve, properly caulk it for a weather tight seal to help prevent moisture from seeping into the wall.

CAUTION

Sealing is critical in preventing freeze-ups, cold drafts, air infiltration, and to prevent moisture from entering the wall or room. Be sure the wall is smooth, square, and provides a suitable mating surface.
Sloping, Sealed Cement Mortar Base

Before setting the louver, construct a sloping, sealed cement mortar base to drain unwanted moisture to the outside, (Figure 23). Be sure the mortar base tapers toward the louver and away from the wall sleeve. The mortar at the wall sleeve also acts as a drain for excess moisture from the outside to drain back outside, thus it must extend so it meets the “D” seal flange of the wall sleeve. Temporarily slide the wall sleeve into place to mark this meeting point on the floor (refer to Step 3 on page 23). The mortar should be the same height as the “D” seal flange. Be sure the sealed cement mortar base is smooth and flush along the wall sleeve “D” seal flange. This is critical in preventing water leaks and air leaks under the unit.

A space must exist between the bottom back edge of the wall sleeve and the sloping sealed cement mortar base to allow moisture to drain away from the condenser section. Do not fill this space with mortar (Figure 23).

Sloped Flashing

If it is not possible to construct a sloping mortar base, then field-supplied flashing is required that is pitched for water drainage (Figure 24). The flashing should terminate flush with the exterior of the building. The flashing should extend so it is under the wall sleeve and meets the “D” seal flange of the wall sleeve. Place a bead of caulk under the flashing to prevent moisture from wicking back to the unit. Do not caulk the joint between the louver and the flashing. This joint is designed to let unwanted moisture escape.

Before setting the louver, be sure the drain lip (vertical louver) is at the bottom, and the bird screen is toward the unit (refer to Figure 16 through Figure 20 on page 10). Place a heavy bead of caulk along the top and the two vertical sides of the louver, leaving the bottom uncaulked so that if moisture gets into the area between the louver and the unit, it can drain to the outside, unrestricted.

Louver With Flanges

Place an additional bead of caulk on the inside of the top and side flanges that come in contact with the building facade. Do not caulk the bottom flange. Place the louver in the opening and push it tight against the building. Fasten it to the exterior of the building using fasteners (by others) appropriate to the installation. Seal the top and sides with a waterproof caulk to make it weather-tight. Do not caulk the bottom of the louver; doing so will trap unwanted moisture behind the flange.

Louver Without Flanges

Place the louver in the opening so that it is recessed a minimum 1/16” (2mm) beyond the building facade or as directed in the architectural plans (Figure 24). If specified in the plans, secure the louver in the wall using mechanical fasteners (supplied by others) appropriate to the installation. With the louver solidly in place, run a bead of caulk around the perimeter of the louver to seal it weather-tight. Do not plug the bottom weep holes or the drip line of the louver. This will restrict the flow of unwanted moisture to the outside.

If flashing was used instead of the sloping mortar base, caulk the flashing where it contacts the “D” seal of the wall sleeve, the sides of the wall, etc. (Figure 24). This helps prevent moisture and outside air from getting under the flashing and into the room.

Figure 23: Typical louver installation with sloping sealed cement mortar base (splitters not shown)

Figure 24: Typical louver installation with sloped flashing

CAUTION

A space must exist between the bottom back edge of the wall sleeve and the sloping sealed cement mortar base to allow moisture to drain away from the condenser section. Do not fill this space with mortar (Figure 23).

Personal injury hazard. Avoid contact with sharp edges.
Top Plan Views – No Recess (Full Projection)

Figure 25: Panel wall application with flush louver

- Panel Wall Thickness
- Wall Sleeve Flanges
- End Panel

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Unit "A"</th>
<th>Louver "L"</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>86</td>
<td>2184</td>
</tr>
<tr>
<td>036</td>
<td>98</td>
<td>2489</td>
</tr>
<tr>
<td>044, 054</td>
<td>110</td>
<td>2794</td>
</tr>
</tbody>
</table>

Note: "A" is unit length without end panels.

Table 5: Unit & louver dimensions

CAUTION

The bottom of the louver must be installed flush with the bottom of the unit for proper air inlet/outlet orientation and to permit water to drain under the louver from the building exterior. Louver dimensions are ±\(\frac{1}{16}\)" (1.6 mm) except as noted.

Intake and discharge must not be restricted. Trees, shrubs, etc., must be a minimum of 30" (762 mm) away from intake.

Louver must be blanked off airtight (by others) if it extends beyond the confines of the wall sleeve.

Horizontal splitters (by others) must be installed whenever there is any space between the wall sleeve and the louver. Seal the ends of the wall opening. Locate splitters between condenser discharge and condenser inlet, and between condenser air inlet and outdoor air inlet. Pitch the splitters toward the louver for water drainage.

Louvres by Daikin provide proper air flow. Proper unit performance has not been verified with louvers by others.

Grille must be flush with louver to provide proper air flow.
Top Plan Views – Partial or Full Recess

Figure 27: Masonry wall application with flush louver

Masonry Wall

Wall Sleeve

Horiz. Splitters By Others (See CAUTION page 13)

Figure 28: Masonry wall application with recessed louver

CAUTION

Max. of 2" (51 mm) Louver Recess from Face of Brick

Table 6: Room projection/end panel depth

<table>
<thead>
<tr>
<th>Application</th>
<th>B Room projection of unit</th>
<th>C Amount unit is recessed into wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Recess</td>
<td>16⅝" (422 mm)</td>
<td>11⅜ (289)</td>
</tr>
<tr>
<td>Recess</td>
<td>19⅞" (498 mm)</td>
<td>8⅛ (213)</td>
</tr>
<tr>
<td>No Recess</td>
<td>28" (711 mm)</td>
<td>0</td>
</tr>
</tbody>
</table>
Louver Installation Methods

Figure 29 through Figure 37 show various methods of installation. Select the appropriate method.

The following is a brief description of several popular methods of installation. Many variations are possible, depending on wall thickness, opening size, method of fastening, etc.

Louveres Without Flanges

Friction Fit Installation

Figure 29. This is a friction fit of the louver where the wall opening is made just large enough for the louver to be held in place by the friction between the wall and the louver. This will require each wall opening be “custom cut” to the intake size, which can be done only after the intake is on site for actual measurements. Recommended wall openings provided in this manual do not apply for this method of installation.

CAUTION

Appropriate fasteners must be used to prevent removal by unauthorized personnel.

Friction Fit Using Shims Installation

Figure 30. In cases where the opening is too large and the louver fits too loosely, friction fit may be obtained by the use of shims to help hold the louver in place.

Fastens To Wall Sleeve Installation

Figure 31. It may be desired to mount the louver to the wall sleeve so as to allow demounting the louver from the building exterior.

The louver may be fastened to the wall sleeve using appropriate fasteners on each corner of the wall sleeve where it butts up against the louver. The louver must be at least as long as the wall sleeve to be secured to the sleeve in this fashion. No holes are provided in the louver or in the wall sleeve for this type of mounting; the holes must be drilled in the field. Mounting hardware must also be provided by the installer. The wall sleeve must be properly secured to the wall structure.

CAUTION

INSTALL SO THAT THE EMBOSSEMENTS ARE AT THE BOTTOM OF THE LOUVER AND THE BIRD SCREEN IS ON THE UNIT (ROOM) SIDE (Figure 20 on page 10).

If the wall intake louver extends above, below, or beyond the ends of the wall sleeve, it must be blanked off airtight in these areas only.

THE WALL OPENING SHOULD BE OF SUFFICIENT SIZE TO ALLOW PROPER, YET SNUG, FIT OF THE LOUVER, AND WILL DEPEND ON THE TYPE OF INSTALLATION. REFER TO APPROVED SUBMITTAL PRINTS FOR RECOMMENDED WALL OPENING SIZE.

If the louver is to be installed in a masonry wall, there should also be a lintel to support the wall above the louver to prevent moisture from seeping into the wall. If it is to be installed in a panel wall, the louver should be placed so that it is as flush as possible with the inside wall.
Angle Bracket Mounting to Exterior Surface

Figure 32. This shows a typical application where an angle bracket is affixed to the edges of the louver and then the entire assembly is mounted from the outside by fastening to the exterior surface using suitable hardware. This figure shows an application where the wall sleeve is fully recessed into the wall and butts up against the louver. However, the same method of installation may be used where only partial or no recess is required and a horizontal air splitter between louver and wall sleeve must be installed.

CAUTION

Do not use mounting angles or strips at the bottom of the intake louver that run across the louver's entire length and plug the weep hole locations. Property damage and poor indoor air quality will result if water cannot drain to the outside from the weep holes. Appropriate fasteners must be used to prevent removal by unauthorized personnel.

Angle Bracket Mounting to Interior Surface

Figure 33. This is a variation of the installation shown in Figure 32 where the angle brackets are mounted on the inside of the louver and fastened to the wall from the interior of the building. This also shows usage of a horizontal air splitter with a partially recessed wall sleeve. Once the louver has been installed, run a bead of caulk around the outside perimeter of the frame to seal it watertight.

CAUTION

Do not plug the weep holes in the bottom of the louver. Property damage and poor indoor air quality will result if water cannot drain to the outside from the weep holes. Appropriate fasteners must be used to prevent removal by unauthorized personnel.

Panel Wall - Angle Bracket Mounting on Exterior Surface

Figure 34. This shows a typical panel wall installation where the panel wall thickness is greater than that of the louver. In this case, it is possible to mount the louver without flange using angle brackets. The louver could be removable from the exterior of the building.

On many panel wall applications, the panel wall manufacturer may accomplish louver mounting by using various aluminum extrusions to “build-in” the louver as a permanent part of the panel wall. All panel wall applications will most likely utilize a full finish collar, meaning no wall sleeve recess into the wall itself. See CAUTIONS above.
Panel Wall Using Moisture Resistant Material/Sheet Metal Framing

Figure 35. If desired, the louver may be “framed” in moisture resistant material or a moisture resistant material/sheet metal combination and then inserted into the panel wall for final mounting. This installation is desirable when the wall opening is considerably larger than that required by the louver. Provide an air and watertight seal and avoid blocking drainage at the bottom of the louver. After installation, be sure that there are no obstructions (mortar, nails, etc.) on the inside of the Louver where it meets the wall sleeve.

CAUTION

Do not use mounting angles or strips at the bottom of the intake louver that run across the louver’s entire length. This will plug the weep hole locations and property damage and poor indoor air quality will result if water cannot drain to the outside from the weep holes. Appropriate fasteners must be used to prevent removal by unauthorized personnel.

Louvers With Flange

Masonry Installation

Figure 36. If the louver is supplied with a flange, follow these steps.
1. A bead of caulk is applied to the inside of the top and side flange that come in contact with the building facade.
2. The louver with flange is placed into the opening and pushed tight against the building.
3. Fasten it to the exterior of the building using appropriate fasteners for the installation.
4. Seal the top and two sides from the inside with waterproof caulk to make it weathertight. Do not seal the bottom flange. To do so may trap water behind the flange. See CAUTION above.

Panel Wall Installation

Figure 37. This installation is typical when the thickness of the panel wall very closely approximates the thickness of the louver itself. Here only mounting straps may be required, running the entire top length and vertical width of the louver. This installation is perhaps the easiest. The louver could be removable from the exterior of the building. See CAUTION above.
Wall Sleeve Details

Note: Please refer to "Transportation Damage" on page 4 for information on receiving, inspection, and filing claims for damage or loss with the carrier, and handling items supplied by Daikin.

Figure 38: Wall sleeve

![Wall sleeve diagram](image)

Table 7: Wall sleeve dimensions

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Overall Length “L” (mm)</th>
<th>Sleeve Recess Length “Lr” (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>86 (2184)</td>
<td>84 (2145)</td>
</tr>
<tr>
<td>036</td>
<td>98 (2489)</td>
<td>96 (2450)</td>
</tr>
<tr>
<td>044, 054</td>
<td>110 (2794)</td>
<td>108 (2755)</td>
</tr>
</tbody>
</table>

Figure 39: Attach electric junction box to wall sleeve

Mount the junction box to the wall sleeve as shown in Figure 39 with five (5) provided screws. Three (3) screws on the front and two (2) screws secure the underside back edge of the junction box to the wall sleeve.

Figure 40: Wall sleeve dimensions for recessed applications

The opening between the wall sleeve and the louver must be completely enclosed by the installer to prevent air and water leaks into the building.

CAUTION
Pre Wall Sleeve Installation Checklist

- Wall sleeve section of manual read in its entirety with understanding of the installation procedures
- Louver installed and sealed with bird screen toward wall sleeve with 9” exhaust opening at top
- Structural columns exist to attach wall sleeve
- Sides of rough opening smooth and sealed
- Electrical and control wiring stubbed up
- Top, and bottom of wall envelope smooth and sealed and 90° to interior mounting wall
- Splitters installed and sealed for mate-up to wall sleeve
- Metal flashing in place or sealed sloped mortar bed for drainage from wall sleeve “D” seal channel to bottom of louver
- Correct wall sleeve confirmed
- Wall sleeve assembled

⚠️ CAUTION

Unit wall sleeve must be anchored to an internal wall column or other suitable support.

The Daikin wall sleeve and louver design is based on a “wet sleeve” concept. In brief, this means the design accommodates the penetration of some moisture into the rear outdoor section of the AZ unit with provisions for containment and disposal of this moisture to the outdoors (see details in Figure 6 on page 6). Therefore, proper Louver, Splitter and Wall Sleeve installation is critical.

The wall sleeve must be installed before the AZ self-contained unit ventilator can be placed. The recessed portion of the wall sleeve measures approximately 84”, 96” or 108” wide by 28” high and may be recessed into the wall up to 11⅜” in depth. Consult approved Daikin submittal drawings for the job to determine the proper amount of recess, if any, and recommended wall opening size.

The AZ unit chassis attaches to the wall sleeve threaded studs using 4-nuts and washers (Figure 41).

NOTICE

Wall and floor must be at 90° to one another. If not, the floor must be leveled (90°) to wall.

Table 8: Recommended rough-in wall opening

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Recommended Rough-in Wall Opening</th>
<th>Sleeve Recess Length “LR”</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>84½” (2146) 28½ (724) mm</td>
<td>84” (2184mm)</td>
</tr>
<tr>
<td>036</td>
<td>96½” (2451) 28½ (724) mm</td>
<td>96” (2489mm)</td>
</tr>
<tr>
<td>044, 054</td>
<td>108½ (2756) 28½ (724) mm</td>
<td>108” (2794mm)</td>
</tr>
</tbody>
</table>

Figure 41: Wall sleeve details (recessed type)
Typical Wall Sleeve Applications

The following is a brief description of three typical methods of installation. Many variations are possible, depending on wall thickness.

Thick Masonry Wall With Full Recess

This example shows the wall sleeve fully recessed into a Masonry (Thick) Wall.

Figure 42: Thick masonry wall with full recess wall sleeve

![Diagram of Thick Masonry Wall With Full Recess](image)

Masonry Wall With Partial Recess

This example shows the wall sleeve partially recessed into a Masonry (Thick) Wall.

Figure 43: Masonry wall with partial recess wall sleeve

![Diagram of Masonry Wall With Partial Recess](image)

Panel Wall With No Recess (Full Projection)

This is an example of a Panel (Thin) Wall construction with No Recess (full projection). The wall sleeve is secured flush to the wall and floor with the addition of flanges. The wall opening is the same as the wall sleeve recessed length (refer to dimension “Lr” in, Table 8 on page 19).

Figure 44: Panel (thin) wall with no recess (full projection) wall sleeve

![Diagram of Panel Wall With No Recess](image)
Unit Room Projection & Splitter Length Details

CAUTION

Horizontal splitter (by others) must be installed whenever there is space between the wall sleeve and the louver. Seal the ends of the wall opening to prevent water penetration and air leakage. Pitch the splitters toward the louver for water drainage.

CAUTION

Figure 45: Splitter locations

Figure 46: 16⅝" room projection or full wall sleeve recess

Figure 47: 19⅝" room projection

Figure 48: 21⅝" room projection

Figure 49: 28" room projection

Table 9: Wall thickness, unit projection into room

<table>
<thead>
<tr>
<th>Wall Thickness "W"</th>
<th>Louver</th>
<th>Unit Projection into Room and Wall Sleeve Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2½"</td>
<td>2½"</td>
<td>0</td>
</tr>
<tr>
<td>4"</td>
<td>2½"</td>
<td>1½"</td>
</tr>
<tr>
<td>6"</td>
<td>2½"</td>
<td>3½"</td>
</tr>
<tr>
<td>8"</td>
<td>2½"</td>
<td>5½"</td>
</tr>
<tr>
<td>8½"</td>
<td>2½"</td>
<td>6½"</td>
</tr>
<tr>
<td>10"</td>
<td>2½"</td>
<td>7½"</td>
</tr>
<tr>
<td>10½"</td>
<td>2½"</td>
<td>8½"</td>
</tr>
<tr>
<td>12"</td>
<td>2½"</td>
<td>9½"</td>
</tr>
<tr>
<td>13½"</td>
<td>2½"</td>
<td>3½"</td>
</tr>
<tr>
<td>14"</td>
<td>2½"</td>
<td>3½"</td>
</tr>
<tr>
<td>16"</td>
<td>2½"</td>
<td>1½"</td>
</tr>
<tr>
<td>18"</td>
<td>2½"</td>
<td>4½"</td>
</tr>
<tr>
<td>24"</td>
<td>2½"</td>
<td>10½"</td>
</tr>
</tbody>
</table>

Note: All dimensions are approximate and subject to change without notice. Actual building dimensions may vary.
General Considerations
The installing contractor shall do the following:
1. Make sure there is a masonry lintel supporting the wall above any masonry opening and vertical wall column on the ends.
2. Frame and seal airtight and watertight all openings between the louver and wall sleeve not enclosed by the wall sleeve.

CAUTION
Installation and maintenance are to be performed only by qualified personnel who are familiar with and in compliance with state, local and national codes and regulations, and experienced with this type of equipment. Sharp edges and coil surfaces are a potential injury hazards. Avoid contact with them.

IMPORTANT
Condenser section drain pan drain notches must not be obstructed by splitter or foam seal. Condensate overflow must drain from these notches in order that it can be removed from the drain pan to the outside (Figure 50 & Figure 51).

CAUTION
Overflow drain notches (2) in the flange of the condenser drain pan must not be blocked. Remove any sealant material from wall sleeve bottom splitter rail that may cover these notches.

Figure 51: Check that condenser section drain pan notches are not blocked

Note: The (2) condenser section drain pan notches are located approximately 1" from the left end and right end of the condenser drain pan flange.

7. Apply rubber stripping or sealant material (by others) across full length of wall sleeve splitters.
8. If the louver does not butt up against the wall sleeve:
 a. Fabricate a horizontal air splitter from galvanized steel, or some other suitable weather resistant material. Pitch the splitters toward the louver for water drainage. The width of the air splitters is determined by the width of the wall opening. The depth of the air splitters is determined by the distance between the louver horizontal splitter and the wall sleeve splitter rails.
 b. Position a 1" diameter drain hole in the horizontal splitter, approximately 6" from each end, next to the louver.

CAUTION
Use appropriate screws to attach to the wall sleeve splitters. Ensure the screws do not restrict proper mate-up or sealing of the unit to the wall sleeve.

9. Permanently seal any remaining air leaks so that, when finished:
 a. There is an airtight separation between the condenser inlet air, condenser discharge air and the outdoor air inlet.
 b. There are no air leaks around the perimeter of the wall sleeve where it adjoins the wall.

3. For details of required sealing, refer to Figure 53 and Figure 54 for recessed wall sleeve applications and Figure 55 and Figure 56 for nonrecessed wall sleeve applications.
4. Seal watertight both ends and top of wall sleeve to building at rear flange of wall sleeve.
5. Seal watertight the bottom of wall sleeve at rear "D" seal to building and pitch toward louver bottom channel. Also fasten the wall sleeve cross channel to the floor through 1/4" holes with fasteners (by others) (7 fasteners - AZ 024), (8 fasteners - AZ 036), (9 fasteners - AZ 044, 054) (refer to Figure 41 on page 19).
6. The louver must be installed with the drain notches located at the bottom and the bird screen located on the unit side. Openings between louver drain notches must be free of mortar or other foreign material for water removal.
Recessed Applications

The installing contractor must do the following:

1. Place the wall sleeve into the wall opening and recess it to the amount shown on the approved Daikin submittal drawings.
2. Level the wall sleeve horizontally and plumb the wall sleeve vertically.
3. (See Figure 52). Mark top (A), bottom (at “D” seal flange (B)), and sides where wall sleeve extends into the wall opening (C). Mark the wall sleeve cross channel holes (D). Also mark points where wall sleeve splitters meet the building envelope (E).

Figure 52: Mark edges and points of wall sleeve on building envelope

4. Drill with the appropriate masonry bit, holes to receive fasteners (by others), for securing the wall sleeve to the building envelope.
5. Make a galvanized metal flashing or use sealed cement mortar from marked edge of “D” seal on wall sleeve, and pitch toward louver. The mortar or flashing should be the same height as the “D” seal flange.

CAUTION

Sloped mortar bed or metal flashing must not restrict water drainage under louver.

6. Fabricate splitter enclosure and/or splitters to fit space between louver and wall sleeve, at marked reference points (see splitter details).
7. Apply gasketing (sealant material) to splitters and seal each end where splitters contact building envelope. A thin layer of caulk is suggested along the edge of the flashing or sloped mortar bed, where it contacts the “D” seal flange.
8. Position the wall sleeve into the opening, making sure all critical sealing points make contact. Fasten the wall sleeve securely in place using the previously drilled holes, and through the two knockouts provided on each end.
9. Secure the splitters to the wall sleeve and seal each splitter to each wall sleeve splitter rail (Figure 53 and Figure 56).
10. Caulk or seal any space between the wall sleeve and the wall on both the indoor side and the outdoor side (Figure 53 and Figure 56).

Figure 53: Recessed wall sleeve – mounting and sealing splitters to wall sleeve and louver

3/16” Under Intake must be free for water run-off. LOUVER INTAKE MUST STAND ON EMBOSSED FEET LOCATED ON BOTTOM.

CAUTION

Locate drain lip at bottom of vertical louver to allow proper drainage. Bird screen must always be on side toward unit.
Full Projection Applications

The installing contractor must check the following before proceeding:

- A structural wall column exists in the wall for anchoring the wall sleeve to the building.
- The louver is installed correctly and sealed, with the wall cavity air and water tight.
- Electrical and wall sleeve control wiring is roughed in.
- The wall behind the unit is smooth and plumb.
- The seals on the rear of the wall sleeve take up the small irregularities of normal masonry construction.
- Moisture resistant material strips are installed on irregular walls or walls with mullions in order to provide a flush surface for the wall sleeve to seal against.
- Moldings at the floor/wall line are omitted behind the unit.

The installing contractor must do the following:

1. Apply sealant (by others) to bottom edge at rear of unit top and both end flanges on rear of wall sleeve to provide air and water tight seal to interior wall of building.
2. Level the wall sleeve horizontally, and plumb the wall sleeve vertically.
3. Mark top, bottom (at “D” seal flange), and sides where wall sleeve extends into the wall opening. Mark the wall sleeve cross channel holes and the vertical frame holes (4). Also mark points where wall sleeve splitters rail(s) meet the building envelope.
4. Drill with the appropriate masonry bit, holes to receive fasteners (by others), for securing the wall sleeve to the building envelope.
5. Make a galvanized metal flashing or use sealed cement mortar from marked edge of “D” seal on wall sleeve, and pitch toward louver.
6. Fabricate splitter enclosure and/or splitters to fit space between louver and wall sleeve, at marked reference points (see splitter details).
7. Apply gasketing (sealant material) to splitters and seal each end where splitters contact building envelope. A thin layer of caulk is required along the edge of the flashing or sloped mortar bed, where it contacts the “D” seal flange to provide an air and water tight seal.
8. Fasten the wall sleeve securely in place by:
 a. Securing it to the floor through the two (2) 3/8” diameter holes in the turned out bottom flanges of the wall sleeve at each end, and/or:
 b. Securing it to the wall through the two (2) 3/8” diameter holes in the turned out vertical flanges of the wall sleeve at each end to a wall structural column on each side.
9. Panel wall applications must have:
 a. The wall opening sleeved to prevent moisture from seeping into the wall interior.
 b. If the panel wall is less than 2¼" thick, the wall louver must be installed flush to the interior wall and be allowed to extend to the outside as required, and must be air and water tight.
10. Seals on wall sleeve must be compressed to provide a watertight seal after installation is complete.
11. Secure the splitters to the wall sleeve and seal each splitter to each wall sleeve splitter rail (see Figure 55 and Figure 56 on page 25).
Leakage of outdoor air wastes energy, causes drafts and erratic unit ventilator operation. These passages are also a potential pathway for water. Provide a sealing surface at the floor line. Install the wall sleeve in a wall made of noncombustible material, and on a floor made of noncombustible material. Floor must be level, unbroken and structurally strong to support the unit.

CAUTION

Figure 55: Sealing full projection wall sleeve and horizontal air splitters

1. **By Others.** Apply sealant (by others) to bottom edge of unit (not shown) and to top flange and both end flanges of wall sleeve (as shown.) This must provide a watertight seal to the wall of the building.

2. **By Others.** Seal Horizontal Air Splitter(s) to building at both ends.

3. **By Others.** Seal both ends of opening between Wall Sleeve and Louver to prevent air and water from entering building structure and room.

4. **By Others.** Seal Horizontal Air Splitter(s) to Louver.

5. **By Others.** Louver must be sealed air and watertight at top and both ends.

6. **By Others.** Seal both ends of opening between Wall Sleeve and Louver to prevent air and water from entering building structure and room.

7. **By Others.** Seal both ends of opening between Wall Sleeve and Louver to prevent air and water from entering building structure and room.

8. **By Others.** Attach Horizontal Air Splitters to Wall Sleeve Splitters as shown.

9. **By Others.** Splitters to have 1" dia. drain hole approx. 6" from each end. Pitch splitters toward louver for water drainage.

10. **By Others.** Seal Horizontal Air Splitter(s) to building at both ends.

IMPORTANT NOTE:

1. **By Others:** Attach Horizontal Air Splitters to Wall Sleeve Splitters as shown. Splitters to have 1" dia. drain hole approx. 6" from each end. Pitch splitters toward louver for water drainage.

2. **By Others:** Seal Horizontal Air Splitter(s) to building at both ends.

3. **By Others:** Seal Horizontal Air Splitter(s) to building at both ends.

CAUTION

Wall sleeve must be anchored to an internal wall column or other suitable support.

CAUTION

Locate drain lip at bottom of vertical louver to allow proper drainage. Bird screen must always be on side toward unit.

Figure 56: Attaching splitters to wall sleeve splitter rails and seals

1. **Slope Down Toward Louver**

2. **Seals**

3. **Screws (by others)**

4. **Top Wall Sleeve Splitter Rail**

5. **Bottom Wall Sleeve Splitter Rail**

6. **1"(25mm)**

7. **5/8"(16mm)**

8. **1"(25mm)**

9. **Seal**

10. **Seal**
Typical Field Assembled Cross-Over Piping Considerations

Wall sleeves used for unit projections of 21¾” and 28” into the room can accommodate field hydronic cross-over piping. 1¾” O.D. maximum piping with insulation resulting in 1¾” total can be installed: (Figure 58) through the wall sleeve finish collar top, or (Figure 59) enclosed in wall cavity. Pipes must be well insulated against freezing.

Figure 58: Cross-over piping in wall sleeve top (by others)

Figure 59: Cross-over Piping in Wall Cavity (By Others)

WARNING

Insulate cross-over piping to help protect against freezing and sweating.

CAUTION

Wall sleeve must be anchored to an internal wall column or other suitable support.

IMPORTANT NOTE: By Others. Seal Louver to Wall Sleeve at top, Wall Sleeve Splitters and ends.

WARNING

Insulate cross-over piping to help protect against freezing and sweating.

CAUTION

Wall sleeve must be anchored to an internal wall column or other suitable support.

By Others. Apply sealant (by others) to bottom edge of unit (not shown) and to top flange and both end flanges of wall sleeve (as shown.) This must provide a watertight seal to the wall of the building.

By Others. Louver must be sealed watertight at top and both ends.

By Others. Apply sealant (by others) to bottom edge of unit (not shown) and to top flange and both end flanges of wall sleeve (as shown.) This must provide a watertight seal to the wall of the building.

By Others. Seal both ends of opening between Wall Sleeve and Louver to prevent air and water from entering the building structure and room.

CAUTION

Wall sleeve must be anchored to an internal wall column or other suitable support.

WARNING

Insulate cross-over piping to help protect against freezing and sweating.

CAUTION

Wall sleeve must be anchored to an internal wall column or other suitable support.

IMPORTANT NOTE: By Others. Seal Louver to Wall Sleeve at top, Wall Sleeve Splitters and ends.
Refer to the wiring diagram furnished with the unit to determine electrical connections required.

CAUTION

Use copper conductors only. Aluminum conductors can cause equipment failure and overheating hazards. All wiring in right hand compartment must be class 1.

CAUTION

All field wiring must be in accordance with the National Electric Code and applicable local codes.

Refer to Figure 63 & Figure 64 on page 28 for stub-up locations. Refer to page 29 and page 30 for main power connections and field wired communication module, page 62 through page 29 for remote wall mounted sensor controls, if any.

Check wall sleeve nameplate to verify it is the correct voltage and amperage for the AZ model to be installed.

Whenever the electric stub-up is brought in through the floor within the confines of the wall sleeve and any portion of the wall sleeve is recessed into the wall, the watertight conduit must be flush with the floor to permit installation of the wall sleeve. Sufficient space must be left around the conduit to permit the attachment of continuing watertight conduit after the wall sleeve is installed. For concrete slabs, it is recommended that this be accomplished either by sleeving the conduit or by recessing a watertight junction box into the slab.

DANGER

Disconnect all electrical power before servicing unit to prevent injury or death due to electrical shock.

Procedure – Main Power Connections

The main steps to wiring the wall sleeve are as follows:

1. Confirm that the main power to the wall sleeve wires are de-engaged and tagged-out.
2. Remove top cover plate and protective plate covering the terminal lugs on the wall sleeve junction box (Figure 61).
3. Bring the main power through the waterproof conduit to the junction box on the wall sleeve, to the terminal lugs on the upstream side of SW1-Main Power non-fused “ON-OFF” switch. See Figure 62 for terminal lug locations and phase connections. Insert main power wires into the terminal lugs (A, B, C) and tighten securely. Power wiring must be hooked up with proper phasing. Electrical (3) phasing must be A, B, and C for electrical phase 1, 2, and 3 (A = L1, B = L2, C = L3). Single phase power wiring must be A and C. Check supply power with a phase meter to match the unit phase wiring.
4. Bring the control wiring (optional remote wall sensor, optional building automation control wiring to the optional communication module, optional communications for other external inputs/outputs) through the waterproof conduit to the junction box on the wall sleeve, to the appropriate capped wires within the wall sleeve junction box.
5. Connect remote wall sensors and external input/output devices to the appropriate wires using the existing wire caps. Verify that the wires are securely fastened within the wire caps. Wiring diagrams for doing so are provided in Figure 65 on page 29 through Figure 66.
6. Reinstall the top cover plate and protective plate covering the terminal lugs of the wall sleeve junction box.
Wall Sleeve Electrical Stub-up Details

Figure 63: Wall sleeve with electric stub-up from bottom

- 2.5/1.75" Dia. Knockout
- .875" Dia. Knockouts (3)
- SW1-Main Power Nonfused “On-Off” Switch (Daikin)

Safety Precaution: Reverse this cover when unit is removed from wall sleeve to cover opening in the end of switch box.

- Wall Sleeve Junction Box
- 5/8" x 3½" opening (for main power wiring from wall sleeve to chassis).
- Field connection by others.
- Control receptacle with plug-in disconnect (Daikin).
- Leads are provided for wire nut connection to all remote controls.

Right End of Unit

Figure 64: Wall sleeve with electric stub-up from side

- 2.5/1.75" Dia. Knockout
- 3.0/2.0" Dia. Knockout
- .875" Dia. Knockouts (3)
- SW1-Main Power Nonfused “On-Off” Switch (Daikin)

Safety Precaution: Reverse this cover when unit is removed from wall sleeve to cover opening in the end of switch box.

- Wall Sleeve Junction Box
- 5/8" x 3½" opening (for main power wiring from wall sleeve to chassis).
- Field connection by others.
- Control receptacle with plug-in disconnect (Daikin).
- Leads are provided for wire nut connection to all remote controls.

Right End of Unit

- Stub-up through side must be confined to this area: cut in field.
- Opening must be carefully prepared and gasketed for air tightness.
AZ unit compressors are single-direction rotation compressors and can be damaged if rotated in the wrong direction. For this reason, proper phasing of electrical power is important.

Unit Connection Procedure to Wall Sleeve

Before installing the unit ventilator into the wall sleeve confirm that power to the wall sleeve is de-energized and tagged out.

After the unit ventilator has been installed into the wall sleeve, do the following:

1. Confirm that power to the wall sleeve is de-energized and locked and tagged-out.
2. Plug in the unit control wiring male plug(s) into the appropriate wall sleeve female plug(s) (Figure 65).
 - Plug in 4-pin (for MicroTech and Electromechanical).
 - 10-pin (MicroTech only).
 - 12-pin (MicroTech only).
3. Remove the wall sleeve junction box terminal lugs cover plate.
4. Insert the unit chassis main power wires (21, 22, and 23) into the wall sleeve disconnect switch terminal lugs. Tighten the terminal lugs securely.
5. Reinstall the wall sleeve terminal lugs cover plate over the main power wires with the label reading correctly, (long edge of plate on top and short edge over front).
6. Proceed to page 52 to complete electrical procedure.

Note: For electromechanical use only (see page 66). 1 and 2 not used for electromechanical. Control connections for electromechanical are made to the terminal block in the left end compartment.

Figure 65: Wall sleeve junction box details for MicroTech

Terminal lugs for supply power wiring (by others) to wall sleeve. Field connection by others.

Figure 66: 4-pin plug MicroTech control wiring diagram

Wiring:

- Use twisted shielded pair (Connect Air W221P-2544 or equivalent).
- Daisy-chain and tie shield to earth ground at one point only. The polarity of the signal must always be maintained throughout the network. Always connect + to + and - to -. The shield connection must be continuous throughout the entire network and must be connected to earth ground at one (and only one) point.

- The N2 Bus can use either solid or stranded wires of the following types:
 - 3-wire twisted cable, 2 twisted-pair telephone cable, or two twisted pair with shield.
 - The wiring is polarity sensitive. The polarity of the signal must always be maintained throughout the network. Always connect + to + and - to -. The shield connection must be continuous throughout the entire network and must be connected to earth ground at one (and only one) point.

- Use Belden 8471, NEMA Level 4, or Echelon-approved equivalent wire. Since the LonWorks communication wiring is polarity insensitive, no polarity must be observed when making connections via the unshielded twisted-pair wiring.
Figure 67: 2 10-pin plug MicroTech® wiring diagram

Note: Not all external input options are available for all models.

Figure 68: 1 12-pin plug MicroTech® control wiring diagram

Note: Not all external input options are available for all models.
Pre Installation Checklist for Unit

- Lintel installed above wall louver to support masonry wall
- Birdscreen on wall louver facing toward room interior
- Embossments of wall louver at bottom and free for drainage
- Wall sleeved to prevent moisture seepage into wall
- Free opening under wall louver clear for water run-out
- Wall louver anchored to building and sealed against air and water leaks
- Horizontal air splitters between wall sleeve and louver (if required), water and air tight
- Wall sleeve anchored to building and sealed against air or water leaks
- Sealant material applied to "D" seal cross channel flange to seal to drainage slope edge
- Unit inspection complete for damage, data plate information and correct location of unit (refer to "Transportation Damage" on page 4)

Remove Packaging and Inspect Unit Ventilator

Carefully remove the packaging, remaining alert to any signs of shipping damage (Figure 69). Be careful not to discard components that may be included with the packaging. (Retain some or all of the packaging to provide jobsite unit location information and temporary protection for the unit ventilator after installation.) Be sure to dispose of plastic packaging and protective cardboard properly, in accordance with local recycling rules and guidelines.

WARNING

Plastic packaging is a suffocation hazard. Dispose of properly. Keep away from children.

The AZ Self-contained unit comes with an allen wrench, four (4) insulation donuts, and four (4) lagging washers in the envelope placed in the left end compartment of the unit (Figure 69).

Important:
1. Move only one unit at a time.
2. DO NOT DROP UNIT!
3. Store in a clean dry environment.
4. Lift only from designated end.

Lower crated unit from dolly (if used), but DO NOT DROP. Remove unit from skid if unit will be installed immediately (Figure 70 through Figure 72 on page 33). If storing unit prior to installation, replace the carton over the unit until installation is begun. This will prevent the unit from being scratched or damaged by other workers preparing the area.

End panels are shipped separate from the unit and are installed after unit installation is complete.

- Unit comes encased in plastic bag. Be sure that the plastic bag is disposed of properly after removing permanently.
- Units are shipped in trucks. See Table 1 on page 5 for loading, truckload quantities, weights and dimensions.
- Unloading difficulties at the job site can be minimized by having the necessary equipment and manpower available when the shipment arrives on the job site.
- Forklift type vehicles should be used to unload the units. When using a forklift, it is very important that the unit be lifted only from the end designated on the carton.
- Forks on the forklift should be minimum of 72 inches long.
- Strap type sling of nylon or other material should be used rather than wire rope to prevent damage to the unit.

Note: These are general instructions. Refer to the Daikin submittal drawings for specific dimensions, unit arrangement, stub-up locations, recommended wall opening size, etc.

Properly Identify Unit Ventilator(s)

To be sure the correct unit ventilator(s) is/are in the correct location(s), the installer must check the packing list and unit identification/tagging number(s) against the plans. Further, the unit data plate, (Figure 69) located on the lower right end of the unit ventilator, contains specific information of standard components (refer to "Nomenclature" on page 73).

Figure 69: Remove packaging to identify unit
Table 11: General unit data

<table>
<thead>
<tr>
<th>Model AZQ, AZU, AZR</th>
<th>024</th>
<th>036</th>
<th>044</th>
<th>054</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal CFM (L/s)</td>
<td>High Speed</td>
<td>1000 (472)</td>
<td>1250 (590)</td>
<td>1500 (708)</td>
</tr>
<tr>
<td></td>
<td>Medium speed</td>
<td>750 (354)</td>
<td>1000 (472)</td>
<td>1150 (543)</td>
</tr>
<tr>
<td></td>
<td>Low Speed</td>
<td>650 (307)</td>
<td>800 (378)</td>
<td>950 (448)</td>
</tr>
<tr>
<td>Number of Fans</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Diameter - in (mm)</td>
<td>8.12 (206mm)</td>
<td>8.12 (206mm)</td>
<td>8.12 (206mm)</td>
<td>8.12 (206mm)</td>
</tr>
<tr>
<td>Width - in (mm)</td>
<td>8.25 (210mm)</td>
<td>8.25 (210mm)</td>
<td>8.25 (210mm)</td>
<td>8.25 (210mm)</td>
</tr>
<tr>
<td>Number of Fans</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fan Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Size</td>
<td>in</td>
<td>10 x 48½ x 1</td>
<td>10 x 60½ x 1</td>
<td>(2) 10 x 36½ x 1</td>
</tr>
<tr>
<td></td>
<td>(mm)</td>
<td>254 x 1232 x 25</td>
<td>254 x 1537 x 25</td>
<td>(2) 254 x 927 x 25</td>
</tr>
<tr>
<td>Area - Ft² (m²)</td>
<td></td>
<td>3.37 (.31)</td>
<td>4.2 (.39)</td>
<td>5.08 (.47)</td>
</tr>
<tr>
<td>Quantity</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Shipping Weight</td>
<td>lb (kg)</td>
<td>885 (402)</td>
<td>975 (442)</td>
<td>1075 (448)</td>
</tr>
<tr>
<td>Refrigerant Charge</td>
<td>oz</td>
<td>124</td>
<td>135</td>
<td>145</td>
</tr>
<tr>
<td>Coil Water Volume</td>
<td>Gallons (Liters)</td>
<td>0.25 (0.95)</td>
<td>0.31 (1.17)</td>
<td>0.38 (1.44)</td>
</tr>
<tr>
<td></td>
<td>1 Row Coil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Row Coil</td>
<td>0.45 (1.70)</td>
<td>0.57 (2.16)</td>
<td>0.69 (2.61)</td>
</tr>
</tbody>
</table>

Before Moving Unit Up to Wall Opening Checklist

- Unit is correct for the location
- Unit installation section of manual was read in its entirety with understanding of the installation procedures of the wall sleeve and air intake louver in accordance with the instructions.
- For full projection applications, the field applied pressure adhesive gasketing has been inspected and forms an unbroken and tight seal to prevent air and water leaks
- Room air and condenser fan bearings are secure and oiled
- Room air and outdoor condenser fan shaft coupling set screws are tightened securely to both motor shaft and fan shaft
- Room air and condenser fans rotate freely and quietly
- Fan wheel set screws are tight
- Construction debris inside unit, in the area of the wall sleeve, the entire surface of the sealed, sloped mortar bed, and the drainage space at the bottom of the outdoor air louver has been cleaned up
- Adequate access space for maintenance, service and unit removal has been provided
- Wall sleeve is properly sealed air and watertight
- Power to wall sleeve is correctly hooked up and control wiring if any is hooked up
- Wall and floor are 90° to one another. If not, floor needs to be leveled (90°) to wall
- Unit power supply is correct and verified by unit data plate

INFORMATION

Check for concealed shipping damage.
End panels are shipped separate from the unit and are installed after unit installation is complete.

Directions given in this bulletin for right and left sides assume a position facing the indoor side of the unit ventilator.
Position the Unit Ventilator

Move the unit ventilator to the correct location. See Table 11 on page 32 for approximate shipping weights.

If the unit packaging has already been removed, carefully remove unit ventilator from wood skid (Figure 70 through Figure 72). Be sure to properly dispose of the skid in accordance with local recycling rules and guidelines.

Lower crated unit from dolly (if used), but DO NOT DROP. Remove external carton by lifting off, and SAVE THIS CARTON.

Removing Unit from the Skid

Remove fasteners at each end which hold the unit to the skid and carefully slide the front of the unit off the skid (1). Tip unit forward until the bottom of the slotted front kickplate is resting on the floor (2). Lift rear of unit off of the skid by tipping unit forward while supporting the unit from the front, until it is possible to slide skid out from under the unit. GENTLY LOWER the rear of the unit to the floor (3).

Figure 70: Removing unit from skid
1. Carefully slide the front of the unit off the front of the skid.

Figure 71: Tip unit forward slowly
2. While supporting unit from the front, slowly tip unit forward until bottom of kickplate is resting on floor.

Figure 72: Remove skid and gently lower unit
3. Remove skid and GENTLY lower the rear of the unit to the floor (DO NOT DROP).
Before Sliding the Unit into Place

Sliding of this unit to the wall can be made easier with the assistance of Caster Kit P/N 105629001 (Figure 73 and Figure 74). A piece of cardboard placed under the unit will make this job easier and reduce marring the floor. (Do not leave cardboard under unit after installation.)

Be certain that the field-supplied electrical connections are in place, de-energized and in accordance with the plans.

![DANGER]

Disconnect all electrical power before installing the unit to prevent injury or death due to electrical shock. Ensure the wall sleeve junction box protective cover plate is installed.

Installing Casters

If the unit was ordered with the optional caster wheels, utilize these casters to help move the unit into position. The outdoor section comes with two swivel casters. Casters are installed as follows:

1. Remove the left and right front access panels.
2. With the one caster (left end), ensure the caster is fully up (turn bolt clockwise to raise, counterclockwise to lower).
3. Locate in the left end compartment the slots and bolt location.
4. Insert the tines of the caster channel into the slots.
5. Securely bolt the front to the unit front rail.
6. Repeat for the right caster wheels (2).
7. Slowly engage the casters by lowering the bolt. Make all caster adjustments equally before raising the unit.
8. When full engaged, the unit will roll forward into the wall sleeve. When installed, reverse the procedure and remove the caster kit. Save the caster kit for future unit servicing or replacement.

Procedure

Wall and floor must be at 90° to one another. If not, the floor needs to be leveled (90°) to wall. Be sure that the condenser section drain pan notches are not blocked (see Figure 51 on page 22 and Figure 78 on page 35).

Slide the unit up to the wall sleeve aligning the four threaded studs (Figure 76 on page 35) on the wall sleeve with the holes on each end of the unit. If the optional indoor caster kit is not used, a piece of cardboard placed under the unit will make the job easier and prevent marking the floor (Do not leave the cardboard under the unit after installation). The wall sleeve mounting studs should slide through the holes in the unit.

If a finish collar is used, make sure that the unit, finish collar and wall sleeve all line up properly.

Confirm that the bottom splitter rail seal in area of unit condenser drain pan notches is removed (see Figure 77 on page 35).
Figure 76: Slide the unit up to the wall sleeve threaded studs

Check to see that the unit ventilator is level from end to end and back to front. Using a 4' level is recommended. Place the washers over the threaded studs and tighten the mounting nuts (see cautions).

CAUTION

Do not draw the nuts up as tight as possible as they may distort the unit and loosen the caulking and wall sleeve from their position.

Figure 77: Bottom splitter rail seal removal

Leakage of outdoor air wastes energy, causes drafts and erratic unit ventilator operation. These passages are also a potential pathway for water. Provide a sealing surface at the floor line. Install the wall sleeve in a wall made of noncombustible material, and on a floor made of noncombustible material. Floor must be level, 90° to wall, unbroken and structurally strong to support the unit.

Figure 78: Wall sleeve drainage considerations

Be sure that the drain slots at the bottom of the condenser section extend beyond the "D" seal and are located over the sloped mortar bed, for removal of water to the outside.

IMPORTANT

The floor, at the location of the outside condenser section caster wheels must be smooth and level, and free of any debris. The condenser section must make contact and seal to the "D" seal on the cross channel of the wall sleeve to help prevent air and water leaks into the building.

Also see Figure 50 & Figure 51 on page 22 for condenser section drainage information
In All Systems

CAUTION

Be sure the hot water supply and return system are thoroughly flushed and cleaned before connecting piping to the unit ventilator. Debris in the lines can damage the unit.

Be sure to install the control valve(s) on the correct unit ventilator. Mixing of valves in the field can result in valves improperly sized for the desired flow rate, which can result in poor operation and coil freeze-ups. Install control valve so there is at least 2" (51mm) minimum clearance to remove the actuator from the valve body.

Be certain that the control valve is installed correctly, with its orientation vertical. Install valves at least 5 degrees off center.

CAUTION

Be certain that the control valves are installed with the proper port orientation to provide proper flow and fail safe operation. Incorrect installation can result in improper unit operation, and/or the possibility of coil freeze-up.

With future servicing considerations in mind, use standard, field-supplied shut-off valves and union connections; this permits easy removal of the coil or control valve if servicing is required. Locate Isolator valves below the floor level, to allow removal of the unit.

WARNING

Proper ventilation is required for brazing. When brazing, be sure to protect unit ventilator components from overheating damage (melting insulation, also damage to valves, wiring, electronics, sensors, etc.).

Before filling, be sure to flush all piping adequately so that all debris is removed. Debris can prevent proper valve operation, resulting in overheating, over-cooling, etc.

Ensure proper insulation of supply and return piping. Proper insulation prevents loss of unit ventilator capacity, overheating of end compartment.

The piping to and from the unit must be protected from outside air and freeze conditions. The piping must be suitably insulated for condensation or heat lose or gain. Penetrations entering the unit end compartments must be fitt/seeded for unit integrity.

Water Coil Connections

Hook up water piping in accordance with Figure 79 through Figure 81 for hot water coil connections.

CAUTION

Failure to install water piping to coils properly can result in improper unit operation and coil freeze-ups.

NOTICE

Use piping shut off valves and connection unions for future servicing to the coil supply and return stubs, instead of hard piping. This permits easy removal of the coil or control valve if servicing is required.

In Water Systems

After flushing piping adequately, so all debris is removed, fill the system.

WARNING

Water system under pressure. Keep face and body parts well away from vent.

Unscrew the vent plug only one or two complete turns, and vent slowly. Water pressure can result in severe personal injury.

At initial operation, vent manually by unscrewing the vent plug one or two turns, Figure 81. After venting, tighten the vent plug firmly.

Figure 79: Hot water coil connections

Note: Consider adding piping unions for future servicing (by others).

Figure 80: Protect components from overheating before brazing

Note: Use a quenching cloth when brazing, to prevent overheating the piping components. (avoid valve damage and erratic operation).

Figure 81: Vent and drain plug

Note: Unscrew the vent plug one or two turns to manually vent system.
AZU and AZQ Hot Water Coil Connection Locations

Heating Coils
65 = 1-row Hot Water Coil
66 = 2-row Hot Water Coil

S = Supply
R = Return

Figure 82: 28" room projection from wall

Note: Shading indicates portion of unit wall sleeve recessed into wall opening

Figure 83: 21⅞" room projection from wall

Note: Shading indicates portion of unit wall sleeve recessed into wall opening

Figure 84: 19¾" room projection from wall

Note: Shading indicates portion of unit wall sleeve recessed into wall opening

Figure 85: 16⅝" room projection from wall

Notes:
1. Water coil connections are 7/8" (22mm) female sweat and terminate 9" (229mm) from the left end of the unit.
2. All coils have the supply and return connections in the left hand compartment.
3. Piping connections are parallel flow through hot water coil.
4. All dimensions are approximate.
AZR Hot Water Coil Connection Locations

Heating Coils
65 = 1-Row Hot Water Coil
66 = 2-Row Hot Water Coil

S = Supply
R = Return

Figure 86: Hot water coil connections – 28" type

Figure 87: Hot water coil connections – 21⅞" type

Figure 88: Hot water coil connections – 19¾" type

Figure 89: Hot water coil connections – 16⅝" type
AZU, AZR, and AZQ Steam Coil Connection Locations

Heating Coils
- 68 = Low Capacity Steam Coil
- 69 = High Capacity Steam Coil

Symbols
- S = Supply
- R = Return

Figure 90: 28" room projection from wall

Figure 91: 21⅝" room projection from wall

Figure 92: 19⅛" room projection from wall

Figure 93: 16⅛" room projection from wall

Note: Shading indicates portion of unit wall sleeve recessed into wall opening

Notes:
1. Steam coil connections are 1⅛" (29mm) female sweat and terminate 9" (229mm) from the left end of the unit.
2. All coils have the supply and return connections in the left hand compartment.
3. Steam coils have a factory installed pressure equalizing line which terminates in a 1/2" (13mm) MPT fitting.
4. All dimensions are approximate.
Model AZQ Valves and Piping – Typical
Face & Bypass End of Cycle Valves

2-Way End of Cycle Valve

When piping the 2-Way End of Cycle valve, refer to label to determine the direction of flow. The valve should be installed so that there is a 2” (51mm) minimum clearance to remove the actuator from the valve body. Provide unions for removal of unit coil and/or control valve as a future service consideration. Hot water connections may be same end as cooling coil connections, but are recommended to be opposite end to facilitate piping.

When using MicroTech® controls, they must be opposite end. The End of Cycle valve accessory must be field installed on the unit for which it was selected.

Figure 94: 2-Way EOC Valve Dimensions

<table>
<thead>
<tr>
<th>Connection</th>
<th>Cv</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4” (19mm) FNPT</td>
<td>7.5</td>
<td>11/16” (18mm)</td>
<td>15/16” (24mm)</td>
<td>3/4” (92mm)</td>
</tr>
</tbody>
</table>

2-Way End of Cycle, Normally Open, Steam Valve Piping

The 2-way End of Cycle steam valve is furnished normally open to the coil. When the valve is de-energized (off) there is full flow through the coil. Energizing the valve reduces the steam flow in the End of Cycle fashion.

Refer to the End of Cycle valve label to determine the direction of flow. The valve should be installed so that there is a 2” (51mm) minimum clearance to remove the actuator from the valve body.

3-Way End of Cycle Valve

When piping the 3-Way End of Cycle valve, refer to label to determine the direction of flow. The valve should be installed so that there is a 2” (51mm) minimum clearance to remove the actuator from the valve body. Provide unions for removal of unit coil and/or control valve as a future service consideration. Hot water connections may be same end as cooling coil connections, but are recommended to be opposite end to facilitate piping.

When using MicroTech® controls, they must be opposite end. The End of Cycle valve accessory must be field installed on the unit for which it was selected.

Figure 95: 3-Way EOC Valve Dimensions

<table>
<thead>
<tr>
<th>Connection</th>
<th>Cv</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4” (19mm) FNPT</td>
<td>5.0</td>
<td>15/16” (24mm)</td>
</tr>
</tbody>
</table>
Figure 96: 2-Way EOC Steam Valve Dimensions

- **Connection** | **Cv** | **X** | **Y** | **Z**
- 1" (25mm) FNPT | 8.0 | 1⅝" (47mm) | 1" (25mm) | 3⅛" (94mm)

Table 12: EOC Actuator Specifications

<table>
<thead>
<tr>
<th>Control</th>
<th>2 Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>24 VAC, 50/60 Hz</td>
</tr>
<tr>
<td>Stroke</td>
<td>Power Stroke 9 to 11 seconds Spring return 4 to 5 seconds</td>
</tr>
<tr>
<td>Ambient</td>
<td>32°F to 125°F (0°C to 52°C)</td>
</tr>
</tbody>
</table>

Table 13: F&B EOC Valve Body Specifications

<table>
<thead>
<tr>
<th></th>
<th>2-Way Valve</th>
<th>3-Way Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections</td>
<td>3/4" FNPT, 1" FNPT</td>
<td>3/4" FNPT</td>
</tr>
<tr>
<td>Static Pressure</td>
<td>300 psi (2100 kPa)</td>
<td>300 psi (2100 kPa)</td>
</tr>
<tr>
<td>Close-Off Pressure</td>
<td>13 & 15 psi (90 & 103 kPa)</td>
<td>13 psi (90 kPa)</td>
</tr>
<tr>
<td>Temperature</td>
<td>32°F to 200°F (0°C to 93°C)</td>
<td>32°F to 200°F (0°C to 93°C)</td>
</tr>
</tbody>
</table>

Figure 97: Typical EOC valve 2-pin plug wiring

Table 14: 2-Way End of Cycle Valve Pressure Drop

Cv	Connection Size	GPM	L/s	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
				ft H2O	kPa															
5.0	3/4 inch			2.3	6.9	3.3	9.9	4.5	13.5	5.9	17.7	7.5	22.3	9.2	27.6	11.2	33.4	13.3	39.7	15.6
7.5	3/4 inch			1.0	3.1	1.5	4.4	2.0	6.0	2.6	7.8	3.3	9.9	4.1	14.8	5.0	12.3	5.9	17.7	6.9

Step 6 – Making Piping Connections

- **3-Way Hot Water EOC Valve, FNPT**
 - Cv = 5.0
 - 3/4 inch
 - ft H2O: 2.3, 3.3, 4.5, 5.9, 7.5, 9.2, 11.2, 13.3, 15.6
 - kPa: 6.9, 9.9, 13.5, 17.7, 22.3, 27.6, 33.4, 39.7, 46.6, 54.1, 62.1, 70.6, 79.7, 89.4, 99.6

- **2-Way Hot Water EOC Valve, FNPT, Normally Open**
 - Cv = 7.5
 - 3/4 inch
 - ft H2O: 1.0, 1.5, 2.0, 2.6, 3.3, 4.1, 5.0, 5.9, 6.9, 8.0, 9.2, 10.5, 11.9, 13.3, 14.8
 - kPa: 3.1, 4.4, 6.0, 7.8, 9.9, 12.3, 14.8, 17.7, 20.7, 24.0, 27.6, 31.4, 35.4, 39.7, 44.2, 49.0
Inspection of Valves
Inspect the package for damage. If package is damaged, notify the appropriate carrier immediately. Refer to “Transportation Damage” on page 4. If undamaged, open the package and inspect the device for obvious damage. Return damaged products.

WARNING
Electrical shock hazard! Disconnect power before installation to prevent electrical shock or equipment damage. Make all connections in accordance with the electrical wiring diagram and in accordance with national and local electrical codes. Use Copper conductors only.

CAUTION
Avoid locations where excessive moisture, corrosive fumes, explosive vapors, or vibration are present. Avoid electrical noise interference. Do not install near large conductors, electrical machinery, or welding equipment.

Mounting End of Cycle Valves
The valves can be mounted in horizontal or vertical piping. When installed in horizontal piping, the actuator must be above the valve body. Refer to Figure 98. When installed in horizontal piping the actuator can be tilted left or right but it must not be tilted below 85° from vertical.

Figure 98: Mounting position

End of Cycle (EOC) Piping
These valves must be piped so the paddle closes against the direction of flow. Flow is from B to A. Refer to the appropriate application in Figure 99 & Figure 100. When installing the actuator to a normally open valve, the actuator must be placed in the manually open position by using the manual operating lever. The first time the valve is operated electrically, the manual operating lever of the actuator will transfer to the automatic position. The manual operating lever can be used to allow flushing of the system after installation. The valves are designed for application in closed hydronic heating systems. High levels of dissolved oxygen and chlorine found in open systems may attack the valve materials and result in premature failure.

Threaded Connection
Apply Teflon tape to all but the last two threads of male pipe thread. Hand screw the pipe into the valve, turning it as far as it will go. Use a wrench to fully tighten the valve to the pipe. Do not over tighten or strip the threads.

Heating – Hot Water End of Cycle Valve Piping
When piping the End of Cycle valve, refer to label to determine the direction of flow. The valve should be installed so that there is a 2” (51mm) minimum clearance to remove the actuator from the valve body. Provide unions for removal of unit coil and/or control valve as a future service consideration. Hot water connections will be opposite the Direct Expansion (DX) cooling coil connections to facilitate piping. The End of Cycle valve accessory must be field installed on the unit for which it was selected.

Coil Piping – Typical
Mount heating valve actuators in an upright position above the center-line of the valve body and should be piped normally open to the coil. Two-position, end-of-cycle (EOC) valves used with face and bypass damper controlled units may be positioned above the valve body a maximum of 85 degrees from the vertical (see Figure 98 on page 42). All control valves are shipped loose to help avoid shipping damage to the piping or the coil connection stub from the weight of the valve, and to provide the installing contractor with maximum flexibility in making the field piping connections. Refer to Daikin factory instruction sheet shipped with the unit for port orientation and a piping schematic. Control valves must be installed on the units in which they are shipped. Indiscriminate mixing of valves among units can result in valves not properly sized for the desired flow rate.

2-Way End of Cycle, Normally Open, Hot Water Valve Piping (typical)
The 2-way End of Cycle hot water valve is furnished normally open to the coil. When the valve is de-energized (off) there is full flow through the coil. Energizing the valve shuts off the water flow.
3-Way End of Cycle, Normally Open, Hot Water Valve Piping (typical)

The 3-way End of Cycle hot water valve is furnished normally open to the coil. When the valve is de-energized (off) there is full flow through the coil. Energizing the valve allows the water to bypass the coil.

![Figure 100: 3-way EOC, normally open, hot water valve piping]

Typical EOC Piping Arrangements

Number Bubble Descriptions For Figure 102 Through Figure 106

1. Three-way End of Cycle control valve (Daikin)
2. Coil air vent (Daikin)
3. Coil drain (Daikin)
4. Shut-off valve (Others)
5. Balancing Shut-off valve(s) (Others)
6. Supply
7. Return
8. Unions (by others) – Must disconnect below floor line
9. Two-way, End of Cycle two-position valve (Daikin)
10. Union: Half attached to coil, half attached to valve
11. All piping, fittings and unions by others (not Daikin) except as noted
12. Steam check valve and pressure equalizing line (Daikin)
13. Float and thermostatic steam trap (Others)
14. Supply and return coil connection and stub-up unions by others

Typical Water Coil Piping - EOC Valve Piping

Figure 102: Face and bypass with 3-way end-of-cycle valve (piping within unit end compartment)
Typical Steam Coil Piping - EOC Valve Piping

Figure 103: Face and bypass with 3-way end-of-cycle valve (piping outside unit end compartment)

Figure 104: Face and bypass with 2-way end-of-cycle valve - same end drain connection (piping within unit end compartment)

Figure 105: Typical 2-Way End of Cycle Valve, Steam Piping

Figure 106: Face and bypass with 2-way end-of-cycle valve - same end drain connection (piping outside unit end compartment)

Note: See label furnished on 2-way valve to determine direction of flow through the valve. Erie E.O.C. steam valves always have the direction of steam flow piped to the B-port of the control valve.
2-Way Modulating Valve (Chilled Water, Hot Water or Combination)

Two-way modulating control valves for MicroTech are designed to regulate the flow of chilled water, hot water or the combination. They consist of a nickel plated brass body and stainless steel ball valve and stem, with a spring return proportional actuator. The optional valve accessory is shipped separate from the unit ventilator for field installation to prevent shipping damage and to provide flexibility in making the field piping connection.

Figure 107: 2-way modulating valve dimensions

Table 15: 2-way actuator specifications (CW, HW, CW/HW)

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>24 VAC, ±20%, 50/60 Hz, 24 VDC, ±10%</td>
</tr>
<tr>
<td>Electrical Connection</td>
<td>3ft [1m], 18 GA plenum cable with 1/2” conduit connector</td>
</tr>
<tr>
<td>Overload Protection</td>
<td>electronic throughout 0° to 95° rotation</td>
</tr>
<tr>
<td>Operating Range Y</td>
<td>2 to 10 VDC, 4 to 20 mA w/ ZG-R01 (500 Ω, 1/4 W resistor)</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>100 kΩ for 2 to 10 VDC (0.1 mA), 500 Ω for 4 to 20 mA</td>
</tr>
<tr>
<td>Feedback Output U</td>
<td>2 to 10 VDC, 0.5 mA max</td>
</tr>
<tr>
<td>Angle of Rotation</td>
<td>Max. 95°, 90°</td>
</tr>
<tr>
<td>Position Indication</td>
<td>visual indicator, 0° to 95° (0° is full spring return position)</td>
</tr>
<tr>
<td>Running Time (Motor)</td>
<td>95 sec</td>
</tr>
<tr>
<td>Running Time (Fail-Safe)</td>
<td><25 sec</td>
</tr>
<tr>
<td>Ambient Humidity</td>
<td>max. 95% RH non-condensing</td>
</tr>
<tr>
<td>Ambient Temperature Range</td>
<td>-22°F to 122°F [-30°C to 50°C]</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40°F to 176°F [-40°C to 80°C]</td>
</tr>
</tbody>
</table>

Table 16: 2-way valve body specifications (CW, HW, CW/HW)

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>chilled, hot water, up to 60% glycol</td>
</tr>
<tr>
<td>Flow Characteristic</td>
<td>equal percentage</td>
</tr>
<tr>
<td>Controllable Flow Range</td>
<td>75°</td>
</tr>
<tr>
<td>Body Pressure Rating [psi]</td>
<td>600</td>
</tr>
<tr>
<td>Media Temperature Range (Water)</td>
<td>0°F to 250°F [-18°C to 120°C]</td>
</tr>
<tr>
<td>Max Differential Pressure (Water)</td>
<td>50 psi (345 kPa)</td>
</tr>
<tr>
<td>Close-Off Pressure</td>
<td>200 psi</td>
</tr>
</tbody>
</table>

Table 17: 2-way modulating valve 1/2” – dimensions (CW, HW, CW/HW)

<table>
<thead>
<tr>
<th>Valve Part No.</th>
<th>Cv</th>
<th>Connection Size (inches)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B209</td>
<td>0.8</td>
<td>1/2"</td>
<td>6.59" (167mm)</td>
<td>2.38" (60mm)</td>
<td>4.9" (124mm)</td>
<td>4.32" (110mm)</td>
<td>1.53" (38mm)</td>
<td></td>
</tr>
<tr>
<td>B210</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B211</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B212</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B213</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B214</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 18: 2-way modulating water valve 1/2” – pressure drop (CW, HW, CW/HW)

<table>
<thead>
<tr>
<th>Pressure Drop Across the Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PSI</td>
</tr>
<tr>
<td>2 PSI</td>
</tr>
<tr>
<td>3 PSI</td>
</tr>
<tr>
<td>4 PSI</td>
</tr>
<tr>
<td>5 PSI</td>
</tr>
<tr>
<td>6 PSI</td>
</tr>
<tr>
<td>7 PSI</td>
</tr>
<tr>
<td>8 PSI</td>
</tr>
<tr>
<td>9 PSI</td>
</tr>
<tr>
<td>10 PSI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-Way CCV Part No.</th>
<th>Cv Maximum Rating</th>
<th>Connection Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>B209</td>
<td>0.8</td>
<td>1/2"</td>
</tr>
<tr>
<td>B210</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>B211</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>B212</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>B213</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>B214</td>
<td>7.4</td>
<td></td>
</tr>
</tbody>
</table>
Two-way modulating control valves for MicroTech are designed to regulate the flow of steam. They consist of a nickel plated brass body and stainless steel ball valve and stem, with a spring return, proportional actuator. The optional valve accessory is shipped separate from the unit ventilator for field installation to prevent shipping damage and to provide flexibility in making the field piping connection.

Figure 108: 2-way modulating valve (steam) dimensions

<table>
<thead>
<tr>
<th>Valve Part No.</th>
<th>Cv</th>
<th>Connection Size (inches)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B215HT073</td>
<td>0.73</td>
<td>1/2"</td>
<td>7.32"</td>
<td>(186mm)</td>
<td>3.33" (85mm)</td>
<td>5.8" (147mm)</td>
<td>5.3"</td>
<td>(135mm)</td>
</tr>
<tr>
<td>B215HT186</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B215HT455</td>
<td>4.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 19: 2-way actuator specifications (steam)

<table>
<thead>
<tr>
<th>Service</th>
<th>high temperature hot water/low pressure steam, up to 60% glycol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Characteristic</td>
<td>A-port equal percentage</td>
</tr>
<tr>
<td>Controllable Flow Range</td>
<td>75°</td>
</tr>
<tr>
<td>Body Pressure Rating [psi]</td>
<td>600</td>
</tr>
<tr>
<td>Max Inlet Pressure (Steam)</td>
<td>15 psi</td>
</tr>
<tr>
<td>Media Temperature Range (Water)</td>
<td>60°F to 266°F [16°C to 130°C]</td>
</tr>
<tr>
<td>Media Temperature Range (Steam)</td>
<td>250°F [120°C]</td>
</tr>
<tr>
<td>Maximum Differential Pressure (Steam)</td>
<td>15 psi</td>
</tr>
<tr>
<td>Max Differential Pressure (Water)</td>
<td>60 psi partially open ball, 116 psi full open</td>
</tr>
<tr>
<td>Close-Off Pressure</td>
<td>200 psi</td>
</tr>
</tbody>
</table>

Table 21: 2-way modulating steam valve 1/2" – dimensions

<table>
<thead>
<tr>
<th>2-Way CCV Part No.</th>
<th>Cv</th>
<th>Connection Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B215HT073</td>
<td>0.73</td>
<td>1/2"</td>
<td>10.99</td>
<td>13.71</td>
<td>16.11</td>
<td>18.33</td>
<td>28.03</td>
<td>36.74</td>
</tr>
<tr>
<td>B215HT186</td>
<td>1.86</td>
<td></td>
<td>22.34</td>
<td>34.93</td>
<td>41.06</td>
<td>46.70</td>
<td>71.42</td>
<td>93.60</td>
</tr>
<tr>
<td>B215HT455</td>
<td>4.55</td>
<td></td>
<td>54.65</td>
<td>85.44</td>
<td>100.43</td>
<td>114.24</td>
<td>174.72</td>
<td>228.97</td>
</tr>
</tbody>
</table>
2-Way Modulating Valve (Steam) - 3/4"

The modulating control valves for MicroTech are designed to regulate the flow of steam. They consist of a nickel plated brass body and stainless steel ball valve and stem, with a spring return, proportional actuator. The optional valve accessory is shipped separate from the unit ventilator for field installation to prevent shipping damage and to provide flexibility in making the field piping connection.

![Figure 109: 2-way modulating valve (steam) dimensions](image)

Table 23: Actuator specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>24 VAC ± 20%, 50/60 Hz, 24 VDC ± 10%</td>
</tr>
<tr>
<td>Electrical Connection</td>
<td>3ft (1m), 18 GA plenum cable with 1/2" conduit connector</td>
</tr>
<tr>
<td>Overload Protection</td>
<td>electronic throughout 0° to 95° rotation</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>100 kΩ for 2 to 10 VDC (0.1 mA), 500 Ω for 4 to 20 mA</td>
</tr>
<tr>
<td>Feedback Output U</td>
<td>2 to 10 VDC (max 0.7 mA) for 95°</td>
</tr>
<tr>
<td>Angle of Rotation</td>
<td>90°</td>
</tr>
<tr>
<td>Position Indication</td>
<td>visual indicator, 0° to 95° (0° is full spring return position)</td>
</tr>
<tr>
<td>Running Time (Motor)</td>
<td>150 sec constant, independent of load</td>
</tr>
<tr>
<td>Running Time (Fail-Safe)</td>
<td><25 sec @ -4°F to 122°F [-20°C to 50°C], <60 sec @ -22°F [-30°C]</td>
</tr>
<tr>
<td>Ambient Temperature Range</td>
<td>-22°F to 122°F [-30°C to 50°C]</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40°F to 176°F [-40°C to 80°C]</td>
</tr>
</tbody>
</table>

Table 24: Valve body specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>high temperature hot water/low pressure steam, up to 60% glycol</td>
</tr>
<tr>
<td>Flow Characteristic</td>
<td>A-port equal percentage</td>
</tr>
<tr>
<td>Controllable Flow Range</td>
<td>75°</td>
</tr>
<tr>
<td>Body Pressure Rating (psi)</td>
<td>600</td>
</tr>
<tr>
<td>Max Inlet Pressure (Steam)</td>
<td>15 psi</td>
</tr>
<tr>
<td>Media Temperature Range (Water)</td>
<td>60°F to 266°F [16°C to 130°C]</td>
</tr>
<tr>
<td>Media Temperature Range (Steam)</td>
<td>250°F (120°C)</td>
</tr>
<tr>
<td>Maximum Differential Pressure (Steam)</td>
<td>15 psi</td>
</tr>
<tr>
<td>Max Differential Pressure (Water)</td>
<td>60 psi partially open ball, 116 psi full open</td>
</tr>
<tr>
<td>Close-Off Pressure</td>
<td>200 psi</td>
</tr>
</tbody>
</table>

Table 25: 2-way modulating valve 3/4” – dimensions

<table>
<thead>
<tr>
<th>Valve Part No.</th>
<th>Cv</th>
<th>Connection Size (inches)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B220HT731</td>
<td>7.31</td>
<td>3/4 inch</td>
<td>8.70” (221mm)</td>
<td>3.96” (101mm)</td>
<td>6.74” (171mm)</td>
<td>6.07” (154mm)</td>
<td>1.89” (48mm)</td>
<td>1.89” (48mm)</td>
</tr>
</tbody>
</table>

Table 26: 2-way modulating steam valve 3/4” – pressure drop

<table>
<thead>
<tr>
<th>2-Way CCV Part No.</th>
<th>Cv Maximum Rating</th>
<th>Connection Size</th>
<th>2 PSI</th>
<th>3 PSI</th>
<th>4 PSI</th>
<th>5 PSI</th>
<th>10 PSI</th>
<th>15 PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>B220HT731</td>
<td>7.31</td>
<td>3/4 inch</td>
<td>110.02</td>
<td>137.27</td>
<td>161.36</td>
<td>183.54</td>
<td>280.70</td>
<td>367.86</td>
</tr>
</tbody>
</table>
3-Way Modulating Valve (Chilled Water, Hot Water or Combination)

Three-way modulating control valves for MicroTech are designed to regulate the flow of hot or chilled water or the combination. They consist of a nickel plated brass body and stem with chrome plated brass ball valve, with a spring return, proportional actuator. The optional valve accessory is shipped separate from the unit ventilator for field installation to prevent shipping damage and to provide flexibility in making the field piping connection.

![3-way modulating valve diagram](image-url)

Table 27: 3-way actuator specifications (CW, HW, CW/HW)

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>24 VAC, ±20%, 50/60 Hz, 24 VDC, ±10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Connection</td>
<td>3ft [1m], 18 GA plenum cable with 1/2" conduit connector</td>
</tr>
<tr>
<td>Overload Protection</td>
<td>electronic throughout 0° to 95° rotation</td>
</tr>
<tr>
<td>Operating Range Y</td>
<td>2 to 10 VDC, 4 to 20 mA w/ ZG-R01 (500 Ω, 1/4 W resistor)</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>100 k Ω for 2 to 10 VDC (0.1 mA), 500 Ω for 4 to 20 mA</td>
</tr>
<tr>
<td>Feedback Output U</td>
<td>2 to 10 VDC, 0.5 mA max</td>
</tr>
<tr>
<td>Angle of Rotation</td>
<td>Max. 95°, 90°</td>
</tr>
<tr>
<td>Position Indication</td>
<td>visual indicator, 0° to 95° (0° is full spring return position)</td>
</tr>
<tr>
<td>Running Time (Motor)</td>
<td>95 sec</td>
</tr>
<tr>
<td>Running Time (Fail-Safe)</td>
<td><25 sec</td>
</tr>
<tr>
<td>Ambient Humidity</td>
<td>max. 95% RH non-condensing</td>
</tr>
<tr>
<td>Ambient Temperature Range</td>
<td>-22°F to 122°F [-30°C to 50°C]</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40°F to 176°F [-40°C to 80°C]</td>
</tr>
</tbody>
</table>

Table 28: 3-way valve body specifications (CW, HW, CW/HW)

Service	chilled, hot water, up to 60% glycol
Flow Characteristic	A-port Equal percentage; B-port modified linear for constant flow
Controllable Flow Range	75°
Body Pressure Rating [psi]	600
Media Temperature Range (Water)	0°F to 250°F [-18°C to 120°C]
Max Differential Pressure (Water)	50 psi (345 kPa)
Close-Off Pressure	200 psi

Table 29: 3-way modulating valve dimensions

<table>
<thead>
<tr>
<th>Valve Part No.</th>
<th>Cv</th>
<th>Connection Size (inches)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B309(B)</td>
<td>0.8</td>
<td>1/2"</td>
<td>6.59" (167mm)</td>
<td>2.38" (60mm)</td>
<td>4.9" (124mm)</td>
<td>4.32" (110mm)</td>
<td>1.53" (38mm)</td>
<td>1.2" (31mm)</td>
</tr>
<tr>
<td>B310(B)</td>
<td>1.2</td>
<td></td>
<td>6.59" (167mm)</td>
<td>2.38" (60mm)</td>
<td>4.9" (124mm)</td>
<td>4.71" (120mm)</td>
<td>1.53" (38mm)</td>
<td>1.29" (33mm)</td>
</tr>
<tr>
<td>B311(B)</td>
<td>1.9</td>
<td></td>
<td>2.38" (60mm)</td>
<td>4.9" (124mm)</td>
<td>4.71" (120mm)</td>
<td>1.53" (38mm)</td>
<td>1.29" (33mm)</td>
<td></td>
</tr>
<tr>
<td>B312(B)</td>
<td>3.0</td>
<td></td>
<td>6.59" (167mm)</td>
<td>2.38" (60mm)</td>
<td>4.9" (124mm)</td>
<td>4.71" (120mm)</td>
<td>1.53" (38mm)</td>
<td>1.29" (33mm)</td>
</tr>
<tr>
<td>B313(B)</td>
<td>4.7</td>
<td></td>
<td>2.73" (69mm)</td>
<td>5.5" (140mm)</td>
<td>4.8" (122mm)</td>
<td>1.53" (38mm)</td>
<td>1.47" (37mm)</td>
<td></td>
</tr>
<tr>
<td>B318(B)</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 30: modulating 3-way hot water, chilled water or 2-pipe CW/HW valve - pressure drop

<table>
<thead>
<tr>
<th>3-Way CCV Part No.</th>
<th>Cv Maximum Rating</th>
<th>Connection Size</th>
<th>1 PSI</th>
<th>2 PSI</th>
<th>3 PSI</th>
<th>4 PSI</th>
<th>5 PSI</th>
<th>6 PSI</th>
<th>7 PSI</th>
<th>8 PSI</th>
<th>9 PSI</th>
<th>10 PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>B309(B)</td>
<td>0.8</td>
<td>1/2"</td>
<td>0.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.8</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>B310(B)</td>
<td>1.2</td>
<td></td>
<td>1.2</td>
<td>1.7</td>
<td>2.2</td>
<td>2.4</td>
<td>2.8</td>
<td>2.9</td>
<td>3.2</td>
<td>3.4</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>B311(B)</td>
<td>1.9</td>
<td></td>
<td>1.9</td>
<td>2.7</td>
<td>3.3</td>
<td>3.8</td>
<td>4.2</td>
<td>4.7</td>
<td>5.0</td>
<td>5.4</td>
<td>5.7</td>
<td>6.0</td>
</tr>
<tr>
<td>B312(B)</td>
<td>3.0</td>
<td></td>
<td>3.0</td>
<td>4.2</td>
<td>5.2</td>
<td>6.0</td>
<td>6.8</td>
<td>7.3</td>
<td>7.9</td>
<td>8.5</td>
<td>9.0</td>
<td>9.5</td>
</tr>
<tr>
<td>B313(B)</td>
<td>4.7</td>
<td></td>
<td>4.7</td>
<td>6.6</td>
<td>8.1</td>
<td>9.4</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>B318(B)</td>
<td>7.4</td>
<td></td>
<td>7.4</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>

![Figure 110: 3-way modulating valve (chilled water, hot water or combination) dimensions](image-url)
Steam Modulating Valve Selection

The steam modulating control valve is expected to vary the quantity of steam through the coil. Any movement of the valve stem should produce some change in the steam flow rate. To select a modulating steam valve:

1. Obtain the supply steam inlet pressure.
2. Determine the actual heat requirement of the space to be heated.

Table 31: Modulating 2-way, normally open, steam valve – pressure drop

<table>
<thead>
<tr>
<th>2-Way CCV Part No.</th>
<th>Cv</th>
<th>Connection Size</th>
<th>2 PSI</th>
<th>3 PSI</th>
<th>4 PSI</th>
<th>5 PSI</th>
<th>10 PSI</th>
<th>15 PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>B215HT073</td>
<td>0.73</td>
<td>1/2"</td>
<td>10.99</td>
<td>13.71</td>
<td>16.11</td>
<td>18.33</td>
<td>28.03</td>
<td>36.74</td>
</tr>
<tr>
<td>B215HT186</td>
<td>1.86</td>
<td></td>
<td>22.34</td>
<td>34.93</td>
<td>41.06</td>
<td>46.70</td>
<td>71.42</td>
<td>93.60</td>
</tr>
<tr>
<td>B215HT455</td>
<td>4.55</td>
<td></td>
<td>54.65</td>
<td>85.44</td>
<td>100.43</td>
<td>114.24</td>
<td>174.72</td>
<td>228.97</td>
</tr>
<tr>
<td>B220HT731</td>
<td>7.31</td>
<td>3/4 inch</td>
<td>110.02</td>
<td>137.27</td>
<td>161.36</td>
<td>183.54</td>
<td>280.70</td>
<td>367.86</td>
</tr>
</tbody>
</table>

Figure 111: Formula equation to calculate Cv

\[Q = \text{Capacity in gallons per minute} \]
\[\text{Cv} = \text{Valve sizing coefficient determined experimentally for each style and size of valve, using water at standard conditions as the test fluid} \]
\[\Delta P = \text{Pressure differential in psi} \]
\[G = \text{Specific gravity of fluid (water at 60°F = 1.0000)} \]

\[\text{Cv} = \frac{G}{\Delta P} \]

CAUTION

Care must be taken with modulating valves to provide proper water flow. In freezing conditions, water flow must be maintained through the heating coil or a suitable freeze-prevention solution employed to prevent freeze-up. Similarly, the cooling coil must be drained or a suitable freeze-prevention solution employed.

Figure 112: Actuator wiring

<table>
<thead>
<tr>
<th>BLK (Common)</th>
<th>ORG (Output 2 to 10 VDC)</th>
<th>RED (24VAC Supply)</th>
<th>WHT (Input 2 to 10 VDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The actuator spring returns the valve to the open position when the actuator is de-energized (off)

2-Way and 3-Way Hot Water and Chilled Water Modulating Valve Selection

The unit ventilator control valve is expected to vary the quantity of water that flows through the coil in a modulating fashion. Any movement of the valve stem should produce some change in the amount of water that flows through the coil. Oversized control valves cannot do this. For example, assume that when the control valve is fully open, the pressure drop through the coil is twice as great as the drop through the valve. In this case, the control valve must travel to approximately 50% closed before it can begin to have any influence on the water flow through the coil. The control system, no matter how sophisticated, cannot overcome this. Oversized control valves can also result in “hunting” which will shorten the life of the valve and actuator and possibly damage the coil.

To correctly select the proper Chilled Water Modulating Valve:
1. Determine the flow of water and the corresponding pressure drop through the coil.
2. Obtain the pressure difference between the supply and return mains.
3. Select a valve size (Cv) from Table 30 on page 48, on the basis of taking 50% of the available pressure difference (at design flow) between the supply and return mains at the valve location. The valve should have a pressure drop greater than that of the coil.
Hot Water Modulating Valve Piping

When piping the modulating valve, refer to the arrows on the modulating valve body to determine the direction of flow. The valve should be installed so that there is a 2” (51mm) minimum clearance to remove the actuator from the valve body. Provide unions for removal of unit coil and/or control valve as a future service consideration. Hot water connections will be opposite the Direct Expansion (DX) cooling coil connections, to facilitate piping. The modulating valve accessory must be field installed on the unit for which it was selected.

CAUTION
Modulating valve size must be selected to provide proper water flow. In freezing conditions, water flow must be maintained through the heating coil or a suitable freeze-prevention solution employed to prevent freeze-up.

CAUTION
Refer to the arrows on the modulating valve body to determine the direction of flow. If the valve is mounted improperly, the unit will not operate properly and damage to the valve may result. Flow is from B to A.

2-Way Modulating, Normally Open, Hot Water Valve Piping (typical)

The 2-way Modulating hot water valve is furnished normally open to the coil. When the valve is de-energized (off) there is full flow through the coil. Energizing the valve reduces the volume of water flow in a modulating fashion.

![Figure 113: 2-way modulating valve control, normally open, hot water](image)

3-Way Modulating, Normally Open, Hot Water Valve Piping (typical)

The 3-way Modulating hot water valve is furnished normally open to the coil. When the valve is de-energized (off) there is full flow through the coil. Energizing the valve allows a varying amount of water to bypass the coil.

Figure 114: 3-way modulating hot water valve control

Note: The A port is always piped to the coil. Actuator to be configured for A port to be Normally Open.
Steam Modulating Valve Piping

The steam modulating control valve is expected to vary the quantity of steam through the coil. Any movement of the valve stem should produce some change in the steam flow rate. The optional factory supplied Daikin MicroTech 2-way Modulating steam valve is furnished normally open to the coil. When the valve is de-energized (off) there is full flow through the coil. Energizing the valve reduces the steam flow in a modulating fashion.

CAUTION

Refer to the arrow on the modulating valve body to determine the direction of flow. If the valve is mounted improperly, the unit will not operate properly and damage to the valve may result.

The valve should be installed so that there is a 2” (51mm) minimum clearance to remove the actuator form the valve body. Provide unions for removal of unit coil and/or control valve as a future service consideration.

Steam connections will be opposite the Direct Expansion (DX) cooling coils connection to facilitate piping. The modulating valve accessory must be field installed on the unit for which it was selected.

Figure 115: Typical 2-way steam modulating valve piping

Steam coils have a factory-installed pressure equalizing valve and a 24” (610mm) long pressure equalizing line that terminates in a 1/2” M.P.T. fitting.

Refer to Figure 116 and Figure 117 and connect the 1/4” (6.35mm) vacuum breaker tube to the downstream return line. Make this connection downstream of the trap outlet.

In Steam Systems:

The optional factory-supplied Daikin MicroTech Modulating Control Valve for steam applications is the 2-way type. It is shipped separately from the unit ventilator to help avoid shipping damage, yet provide the installer with maximum flexibility in making the field piping connection. For steam applications, the 2-way, angle pattern valve furnished is normally piped open to the coil. All steam coils are 1-1/8” (34mm) female sweat connections. Coil connections terminate 9” (229mm) from the end of the unit.

Figure 116: Same end connections

Figure 117: 2-way steam modulating valve ccontrol - same end drain connection (piping within unit end compartment)

Condensate Piping:

Daikin cooling unit ventilators are designed for condensate removal into a condensate disposal system. Do not connect the unit drain connection so that condensate exits to the outside and/or is exposed to freezing temperatures. Installer is responsible for any damage that might be caused from freezing condensate.
WARNING

To avoid electrical shock, personal injury or death, be sure that field wiring complies with local and national fire, safety, and electrical codes, and voltage to the system is within the limits shown in the job-specific drawings and unit electrical data plate(s).

WARNING

Power supply to unit must be disconnected before making field connections. To avoid electrical shock, personal injury or death, be sure to rigorously adhere to field wiring procedures regarding proper lockout and tagout of components.

See Table 32 on page 53 through Table 39, Figure 118 on page 57 and the job-specific electrical drawings before proceeding with field power and control wiring. See also the wiring diagram provided on the unit ventilator right front access panel.

CAUTION

Confirm the wiring and phase is correct. Running the compressor backward will damage the compressor and void the warranty.

Procedure

1. Confirm that the power to the wall sleeve is de-energized and tagged-out.
2. Verify that all wiring has been hooked up per the instructions beginning with step 4 on page 27 through page 29. Details for MicroTech controls begin on page 57, and electromechanical control page 66.
3. Confirm that the unit SW1-Main Power non-fused “On-Off” switch is “Off.”
4. Provide power to the wall sleeve.
5. Verify that the main power is correctly phased to the wall sleeve and unit without closing SW1.
AZU & AZQ – Size 024

Table 32: Electrical data, models AZU and AZQ

<table>
<thead>
<tr>
<th>Volt/Hz/Phase</th>
<th>Voltage Range</th>
<th>Room Fan FLA</th>
<th>Outdoor Fan FLA</th>
<th>Compressor</th>
<th>Heat Type</th>
<th>Heating Option</th>
<th>Heater kW</th>
<th>Rated Heater Amps</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>RLA</td>
<td>LRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208/60/1</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>None, HW Steam</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>208/60/1</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>8.0</td>
<td>38.5</td>
<td>51.5</td>
</tr>
<tr>
<td>208/60/1</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>High (6 elem.)</td>
<td>16.0</td>
<td>76.9</td>
<td>99.5</td>
</tr>
<tr>
<td>230/60/1</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>None, HW Steam</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>230/60/1</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>7.3</td>
<td>33.3</td>
<td>45.0</td>
</tr>
<tr>
<td>230/60/1</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>High (6 elem.)</td>
<td>14.7</td>
<td>66.7</td>
<td>86.8</td>
</tr>
<tr>
<td>208/60/3</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>None, HW Steam</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>208/60/3</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>8.0</td>
<td>22.2</td>
<td>31.1</td>
</tr>
<tr>
<td>208/60/3</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>High (6 elem.)</td>
<td>16.0</td>
<td>44.4</td>
<td>58.9</td>
</tr>
<tr>
<td>230/60/3</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>None, HW Steam</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>230/60/3</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>7.3</td>
<td>19.2</td>
<td>27.4</td>
</tr>
<tr>
<td>230/60/3</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>High (6 elem.)</td>
<td>14.7</td>
<td>38.5</td>
<td>51.5</td>
</tr>
<tr>
<td>460/60/3</td>
<td>414</td>
<td>506</td>
<td>2.7</td>
<td>1.2</td>
<td>3.5</td>
<td>28.0</td>
<td>None, HW Steam</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>460/60/3</td>
<td>2.7</td>
<td>1.2</td>
<td>3.5</td>
<td>28.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>7.3</td>
<td>9.6</td>
<td>15.4</td>
</tr>
<tr>
<td>460/60/3</td>
<td>2.7</td>
<td>1.2</td>
<td>3.5</td>
<td>28.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>High (6 elem.)</td>
<td>14.7</td>
<td>19.2</td>
<td>27.4</td>
</tr>
</tbody>
</table>

1 Electric Heat Options are without Compressor and Outdoor Fan.

AZR – Size 024

Table 33: Electrical data, model AZR only

<table>
<thead>
<tr>
<th>Volt/Hz/Phase</th>
<th>Voltage Range</th>
<th>Room Fan FLA</th>
<th>Outdoor Fan FLA</th>
<th>Compressor</th>
<th>Heating Option</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>RLA</td>
<td>LRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208/60/1</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
</tr>
<tr>
<td>208/60/1</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>Elec. Heat1</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td>208/60/1</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>Elec. Heat1</td>
<td>High (6 elem.)</td>
</tr>
<tr>
<td>230/60/1</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
</tr>
<tr>
<td>230/60/1</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>Elec. Heat1</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td>230/60/1</td>
<td>2.7</td>
<td>2.9</td>
<td>11.7</td>
<td>58.3</td>
<td>Elec. Heat1</td>
<td>High (6 elem.)</td>
</tr>
<tr>
<td>208/60/3</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
</tr>
<tr>
<td>208/60/3</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>Elec. Heat1</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td>208/60/3</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>Elec. Heat1</td>
<td>High (6 elem.)</td>
</tr>
<tr>
<td>230/60/3</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
</tr>
<tr>
<td>230/60/3</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>Elec. Heat1</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td>230/60/3</td>
<td>2.7</td>
<td>2.9</td>
<td>6.5</td>
<td>55.4</td>
<td>Elec. Heat1</td>
<td>High (6 elem.)</td>
</tr>
<tr>
<td>460/60/3</td>
<td>414</td>
<td>506</td>
<td>2.7</td>
<td>1.2</td>
<td>3.5</td>
<td>28.0</td>
</tr>
<tr>
<td>460/60/3</td>
<td>2.7</td>
<td>1.2</td>
<td>3.5</td>
<td>28.0</td>
<td>Elec. Heat1</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td>460/60/3</td>
<td>2.7</td>
<td>1.2</td>
<td>3.5</td>
<td>28.0</td>
<td>Elec. Heat1</td>
<td>High (6 elem.)</td>
</tr>
</tbody>
</table>

1 Electric Heat Options are with Compressor and Outdoor Fan.

Legend: FLA = Full Load Amps RLA = Rated Load Amps LRA = Locked Rotor Amps MCA = Minimum Circuit Ampacity
AZU & AZQ – Size 036

Table 34: Electrical data, models AZU and AZQ

<table>
<thead>
<tr>
<th>Volt/Hz/Phase</th>
<th>Voltage Range</th>
<th>Room Fan FLA</th>
<th>Outdoor Fan FLA</th>
<th>Compressor</th>
<th>Heating Option</th>
<th>Heating kW</th>
<th>Rated Heater Amps</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>RLA</td>
<td>LRA</td>
<td>Room</td>
<td>Heating</td>
<td>LRA</td>
<td>Max.</td>
</tr>
<tr>
<td>208/60/1</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>10.0</td>
<td>48.1</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>High (6 elem.)</td>
<td>20.0</td>
<td>96.2</td>
</tr>
<tr>
<td>230/60/1</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>9.2</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>High (6 elem.)</td>
<td>18.4</td>
<td>83.3</td>
</tr>
<tr>
<td>208/60/3</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>10.0</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>High (6 elem.)</td>
<td>20.0</td>
<td>55.5</td>
</tr>
<tr>
<td>230/60/3</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>9.2</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>High (6 elem.)</td>
<td>18.4</td>
<td>48.1</td>
</tr>
<tr>
<td>460/60/3</td>
<td>414</td>
<td>506</td>
<td>2.7</td>
<td>1.2</td>
<td>6.2</td>
<td>44.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>1.2</td>
<td>6.2</td>
<td>44.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>9.2</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>1.2</td>
<td>6.2</td>
<td>44.0</td>
<td>Elec. Heat¹ (AZU Only)</td>
<td>High (6 elem.)</td>
<td>18.4</td>
<td>24.1</td>
</tr>
</tbody>
</table>

¹ Electric Heat Options are without Compressor and Outdoor Fan.

AZR – Size 036

Table 35: Electrical data, models AZR only

<table>
<thead>
<tr>
<th>Volt/Hz/Phase</th>
<th>Voltage Range</th>
<th>Room Fan FLA</th>
<th>Outdoor Fan FLA</th>
<th>Compressor</th>
<th>Heating Option</th>
<th>Heating kW</th>
<th>Rated Heater Amps</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>RLA</td>
<td>LRA</td>
<td>Room</td>
<td>Heating</td>
<td>LRA</td>
<td>Max.</td>
</tr>
<tr>
<td>208/60/1</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>Elec. Heat¹</td>
<td>Low (3 elem.)</td>
<td>10.0</td>
<td>48.1</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>Elec. Heat¹</td>
<td>High (6 elem.)</td>
<td>20.0</td>
<td>96.2</td>
</tr>
<tr>
<td>230/60/1</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>Elec. Heat¹</td>
<td>Low (3 elem.)</td>
<td>9.2</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>96.0</td>
<td>Elec. Heat¹</td>
<td>High (6 elem.)</td>
<td>18.4</td>
<td>83.3</td>
</tr>
<tr>
<td>208/60/3</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>Elec. Heat¹</td>
<td>Low (3 elem.)</td>
<td>10.0</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>Elec. Heat¹</td>
<td>High (6 elem.)</td>
<td>20.0</td>
<td>55.5</td>
</tr>
<tr>
<td>230/60/3</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>Elec. Heat¹</td>
<td>Low (3 elem.)</td>
<td>9.2</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>17.9</td>
<td>88.0</td>
<td>Elec. Heat¹</td>
<td>High (6 elem.)</td>
<td>18.4</td>
<td>48.1</td>
</tr>
<tr>
<td>460/60/3</td>
<td>414</td>
<td>506</td>
<td>2.7</td>
<td>1.2</td>
<td>6.2</td>
<td>44.0</td>
<td>None, HW Steam</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>1.2</td>
<td>6.2</td>
<td>44.0</td>
<td>Elec. Heat¹</td>
<td>Low (3 elem.)</td>
<td>9.2</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>1.2</td>
<td>6.2</td>
<td>44.0</td>
<td>Elec. Heat¹</td>
<td>High (6 elem.)</td>
<td>18.4</td>
<td>24.1</td>
</tr>
</tbody>
</table>

¹ Electric Heat Options are with Compressor and Outdoor Fan.

Legend: FLA = Full Load Amps
RLA = Rated Load Amps
LRA = Locked Rotor Amps
MCA = Minimum Circuit Ampacity
AZU & AZQ – Size 044

Table 36: Electrical data, models AZU and AZQ

<table>
<thead>
<tr>
<th>Volt/Hz/ Phase</th>
<th>Voltage Range</th>
<th>Room Fan FLA</th>
<th>Outdoor Fan FLA</th>
<th>Compressor</th>
<th>Heating Option</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>RLA</td>
<td>LRA</td>
<td>Heat Type</td>
<td>Heater kW</td>
</tr>
<tr>
<td>208/60/1</td>
<td>197</td>
<td>226</td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
<td>High (6 elem.)</td>
<td>24.0</td>
</tr>
<tr>
<td>230/60/1</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
<td>High (6 elem.)</td>
<td>22.0</td>
</tr>
<tr>
<td>208/60/3</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
<td>High (6 elem.)</td>
<td>24.0</td>
</tr>
<tr>
<td>230/60/3</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
<td>High (6 elem.)</td>
<td>22.0</td>
</tr>
<tr>
<td>460/60/3</td>
<td>414</td>
<td>506</td>
<td>2.7</td>
<td>1.2</td>
<td>6.4</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>1.2</td>
<td>6.4</td>
<td>41.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>1.2</td>
<td>6.4</td>
<td>41.0</td>
<td>High (6 elem.)</td>
<td>22.0</td>
</tr>
</tbody>
</table>

1 Electric Heat Options are without Compressor and Outdoor Fan.

AZR – Size 044

Table 37: Electrical data, models AZR only

<table>
<thead>
<tr>
<th>Volt/Hz/ Phase</th>
<th>Voltage Range</th>
<th>Room Fan FLA</th>
<th>Outdoor Fan FLA</th>
<th>Compressor</th>
<th>Heating Option</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>RLA</td>
<td>LRA</td>
<td>Heat Type</td>
<td>Heater kW</td>
</tr>
<tr>
<td>208/60/1</td>
<td>197</td>
<td>226</td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
<td>Elec. Heat1</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
<td>High (6 elem.)</td>
<td>24.0</td>
</tr>
<tr>
<td>230/60/1</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>21.2</td>
<td>104.0</td>
<td>High (6 elem.)</td>
<td>22.0</td>
</tr>
<tr>
<td>208/60/3</td>
<td>197</td>
<td>228</td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
<td>High (6 elem.)</td>
<td>24.0</td>
</tr>
<tr>
<td>230/60/3</td>
<td>207</td>
<td>253</td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.9</td>
<td>14.0</td>
<td>83.1</td>
<td>High (6 elem.)</td>
<td>22.0</td>
</tr>
<tr>
<td>460/60/3</td>
<td>414</td>
<td>506</td>
<td>2.7</td>
<td>1.2</td>
<td>6.4</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>1.2</td>
<td>6.4</td>
<td>41.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>1.2</td>
<td>6.4</td>
<td>41.0</td>
<td>High (6 elem.)</td>
<td>22.0</td>
</tr>
</tbody>
</table>

1 Electric Heat Options are with Compressor and Outdoor Fan.

Legend: FLA = Full Load Amps RLA = Rated Load Amps LRA = Locked Rotor Amps MCA = Minimum Circuit Ampacity
AZU & AZQ – Size 054

Table 38: Electrical data, models AZU and AZQ

<table>
<thead>
<tr>
<th>Volt/Hz/Phase</th>
<th>Voltage Range</th>
<th>Room Fan FLA RLA</th>
<th>Outdoor Fan FLA LRA</th>
<th>Compressor Heat Type</th>
<th>Heating Option</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>208/60/1</td>
<td>197 228</td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>None, HW Steam</td>
<td>–</td>
<td>43.4 70</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>12.0 57.7</td>
<td>75.5 80</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>High (6 elem.)</td>
<td>24.0 115.4</td>
<td>147.6</td>
<td></td>
</tr>
<tr>
<td>230/60/1</td>
<td>207 253</td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>None, HW Steam</td>
<td>–</td>
<td>43.4 70</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>11.0 50.0</td>
<td>65.9 70</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>High (6 elem.)</td>
<td>22.0 100.0</td>
<td>128.4</td>
<td></td>
</tr>
<tr>
<td>208/60/3</td>
<td>197 228</td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>None, HW Steam</td>
<td>–</td>
<td>30.1 45</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>12.0 33.3</td>
<td>45.0 45</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>High (6 elem.)</td>
<td>24.0 66.6</td>
<td>86.6</td>
<td></td>
</tr>
<tr>
<td>230/60/3</td>
<td>207 253</td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>None, HW Steam</td>
<td>–</td>
<td>30.1 45</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>11.0 28.9</td>
<td>39.5 40</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>High (6 elem.)</td>
<td>22.0 57.7</td>
<td>75.5</td>
<td></td>
</tr>
<tr>
<td>460/60/3</td>
<td>414 506</td>
<td>2.7 1.2</td>
<td>7.2 52.0</td>
<td>None, HW Steam</td>
<td>–</td>
<td>13.9 20</td>
</tr>
<tr>
<td></td>
<td>2.7 1.2</td>
<td>7.2 52.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>11.0 14.4</td>
<td>21.4 25</td>
</tr>
<tr>
<td></td>
<td>2.7 1.2</td>
<td>7.2 52.0</td>
<td>High (6 elem.)</td>
<td>22.0 28.9</td>
<td>39.5</td>
<td></td>
</tr>
</tbody>
</table>

1 Electric Heat Options are without Compressor and Outdoor Fan.

AZR – Size 054

Table 39: Electrical data, model AZR

<table>
<thead>
<tr>
<th>Volt/Hz/Phase</th>
<th>Voltage Range</th>
<th>Room Fan FLA RLA</th>
<th>Outdoor Fan FLA LRA</th>
<th>Compressor Heat Type</th>
<th>Heating Option</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>208/60/1</td>
<td>197 228</td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>None, HW Steam</td>
<td>–</td>
<td>43.4 70</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>12.0 57.7</td>
<td>75.5 80</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>High (6 elem.)</td>
<td>24.0 115.4</td>
<td>147.6</td>
<td></td>
</tr>
<tr>
<td>230/60/1</td>
<td>207 253</td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>None, HW Steam</td>
<td>–</td>
<td>43.4 70</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>11.0 50.0</td>
<td>65.9 70</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>27.1 152.9</td>
<td>High (6 elem.)</td>
<td>22.0 100.0</td>
<td>128.4</td>
<td></td>
</tr>
<tr>
<td>208/60/3</td>
<td>197 228</td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>None, HW Steam</td>
<td>–</td>
<td>30.1 45</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>12.0 33.3</td>
<td>45.0 45</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>High (6 elem.)</td>
<td>24.0 66.6</td>
<td>86.6</td>
<td></td>
</tr>
<tr>
<td>230/60/3</td>
<td>207 253</td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>None, HW Steam</td>
<td>–</td>
<td>30.1 45</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>11.0 28.9</td>
<td>39.5 40</td>
</tr>
<tr>
<td></td>
<td>2.7 2.9</td>
<td>16.5 110.0</td>
<td>High (6 elem.)</td>
<td>22.0 57.7</td>
<td>75.5</td>
<td></td>
</tr>
<tr>
<td>460/60/3</td>
<td>414 506</td>
<td>2.7 1.2</td>
<td>7.2 52.0</td>
<td>None, HW Steam</td>
<td>–</td>
<td>13.9 20</td>
</tr>
<tr>
<td></td>
<td>2.7 1.2</td>
<td>7.2 52.0</td>
<td>Elec. Heat1 (AZU Only)</td>
<td>Low (3 elem.)</td>
<td>11.0 14.4</td>
<td>21.4 25</td>
</tr>
<tr>
<td></td>
<td>2.7 1.2</td>
<td>7.2 52.0</td>
<td>High (6 elem.)</td>
<td>22.0 28.9</td>
<td>39.5</td>
<td></td>
</tr>
</tbody>
</table>

1 Electric Heat Options are with Compressor and Outdoor Fan.

Legend: **FLA** = Full Load Amps **RLA** = Rated Load Amps **LRA** = Locked Rotor Amps **MCA** = Minimum Circuit Ampacity
MicroTech Wiring Diagram – Typical

Figure 118: Typical MicroTech Controls Wiring Diagram – 208V / 60Hz / 1Ph

Note: See Figure 119 on page 58 for typical MicroTech service and disconnect wiring and wiring schematic legend.
Figure 119: Typical MicroTech Wiring Diagram – Service and Disconnect – 208V / 60Hz / 1Ph

Table 40: Wiring Diagram Legend for Figure 118 on page 57 and Figure 119.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Actuator- Outdoor Air</td>
<td>HP</td>
<td>High Pressure Switch</td>
<td>R32</td>
<td>Relay - Drain Pan Heater</td>
</tr>
<tr>
<td>A2</td>
<td>Actuator- Face & Bypass</td>
<td>ICT</td>
<td>Sensor - Indoor DX Coil Temperature</td>
<td>R28</td>
<td>Relay - Outdoor Motor Air</td>
</tr>
<tr>
<td>CP1</td>
<td>Motor Compressor 2-Stage</td>
<td>IH</td>
<td>Sensor - Indoor Humidity</td>
<td>RV</td>
<td>Reversing Valve</td>
</tr>
<tr>
<td>C1</td>
<td>Compressor Contactor</td>
<td>MCB</td>
<td>Main Control Board</td>
<td>RAT</td>
<td>Sensor - Room Air Temperature</td>
</tr>
<tr>
<td>CAP1</td>
<td>Capacitor Run</td>
<td>NTWK</td>
<td>Network Connection</td>
<td>T6</td>
<td>Thermostat - Freeze Stat</td>
</tr>
<tr>
<td>CEH1-3</td>
<td>Electric Heat Contactor</td>
<td>OAT</td>
<td>Sensor - Outdoor Air Temperature</td>
<td>TB1</td>
<td>Terminal Block - 24VAC+</td>
</tr>
<tr>
<td>CO2</td>
<td>Sensor - Indoor Air CO2</td>
<td>OCT</td>
<td>Sensor - Outdoor DX Coil Temperature</td>
<td>TB2</td>
<td>Terminal Block - 24VAC Gnd</td>
</tr>
<tr>
<td>DAT</td>
<td>Sensor - Discharge Air Temperature</td>
<td>OH</td>
<td>Sensor - Outdoor Humidity</td>
<td>TB3</td>
<td>(A, B) Terminal Block - Main Power</td>
</tr>
<tr>
<td>DCS</td>
<td>Switch - Unit Power</td>
<td>OH1</td>
<td>Thermostat - Overheat</td>
<td>TBE</td>
<td>Terminal Block - Electric Heat</td>
</tr>
<tr>
<td>DF</td>
<td>Dead Front Switch</td>
<td>OH2</td>
<td>Thermostat - Overheat</td>
<td>TR1</td>
<td>Transformer - Motor Speed</td>
</tr>
<tr>
<td>EH1-6</td>
<td>Heater - Electric</td>
<td>OHM</td>
<td>E.H. Man Reset - Overheat Stat</td>
<td>TR3</td>
<td>Transformer - 208 / 230V-24V, 75VA</td>
</tr>
<tr>
<td>EH10</td>
<td>Heater - Outdoor Drain Pan</td>
<td>PL1</td>
<td>LED Occupancy / Fault Status</td>
<td>TR4</td>
<td>Transformer - 460V–230V</td>
</tr>
<tr>
<td>F1A/F1B</td>
<td>Fuse - Compressor</td>
<td>R1-R3</td>
<td>Relay Electric Heat (Backup)</td>
<td>TR5</td>
<td>Transformer - 208 / 230V-24V</td>
</tr>
<tr>
<td>FA/FB</td>
<td>Fuse – Control, Load</td>
<td>R4H</td>
<td>Relay – Fan High Speed</td>
<td>V2</td>
<td>Valve – Cool EOC (Accessory)</td>
</tr>
<tr>
<td>FC/FD</td>
<td>Fuse – Control, Transformer</td>
<td>R4M</td>
<td>Relay – Fan Medium Speed</td>
<td>VH</td>
<td>Valve - Heat (Accessory)</td>
</tr>
<tr>
<td>FMI</td>
<td>Motor - Room Fan</td>
<td>R4L</td>
<td>Relay – Fan Low Speed</td>
<td>VC</td>
<td>Valve – Cool (Accessory)</td>
</tr>
<tr>
<td>FMO</td>
<td>Motor Outdoor Air</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. All electrical installation must be in accordance with national and local electrical codes and job wiring schematic.
2. External wiring options - see IM for the different configured options, wiring to be minimum 18 gauge, 90°C.
3. EC motors are factory programmed for specified air flow. Contact Daikin Applied for replacement.
5. Switch wire 509 to terminal 2 for 208V operation.
6. Devices in legend may or may not be on unit.
MicroTech Unit Mounted DDC Control Components

Note: Figure 120 & Figure 121 provide a top view of the unit and its components. A description of each component follows, by callout number.

1. MicroTech Unit Ventilator Controller (UVC): (Located Beneath the Local User Interface Panel). Factory mounted and run tested, microprocessor-based DDC control device capable of complete, Stand-alone unit control or incorporated into a building-wide network using the optional BACnet plug-in communication module. The UVC contains a microprocessor that is pre-programmed with the application code required to operate the unit. The UVC supports up to 16 analog inputs, 8 binary inputs, 4 analog outputs, 2 PWM outputs, and 14 binary outputs. Client-server unit controllers are field configured for local peer-to peer network between units, with the wiring field-installed.

2. Communication Modules (optional): (Located Beneath the Local User Interface Panel). Plug-in network communication module that is attached to the UVC via a 12-pin header and 4 locking standoffs. Available communication modules:
 • Building Automation and Control Network (BACnet™) Client-Server Token Passing (MS/TP) - Allows the UVC to inter-operate with systems that use the BACnet (MS/TP) protocol with a conformance level of 3. Meets the requirements of ANSI/ASHRAE 135-2008 standard for BACnet systems.
 • LonWORKS™ compliant Space Comfort Controller (SCC) – Supports the LonWORKS SCC profile number 8500-10.

3. Local User Interface (LUI) (optional): (see Figure 121 and Figure 122) The LUI provides a unit mounted interface which indicates the current unit operating state and can be used to adjust the unit ventilator operating parameters (operating mode, temperature set points, fan speed and occupancy mode). The LUI has a built in menu structure (password protected) with 4 keys and 2 individual LED indicators to adjust the unit ventilator operating parameters.

4. External Signal Connection Plugs: (Located Beneath the Local User Interface Panel). Three (3) multi-pin plugs are factory provided and pre-wired with amp plug connections that plug into the wall sleeve. Provided for field wiring of:
 • Remote Wall Mounted Temperature Sensor (optional accessory).
 • External Input Signals (by others): unoccupied, remote shutdown, ventilation lockout, dew point/humidity (night time operation) or exhaust interlock signals.
 • External Output Options (by others): fault indication signal, exhaust fan on/off or auxiliary heat signal.

Note: Not all external signal options can be used simultaneously and may not be available on all software models.

5. Motor speed transformer: (Located Beneath the Local User Interface Panel). Multi-tap auto-transformer provides multiple fan motor speed control through the LUI.

6. Unit Main Power “On-Off” Switch (not shown): Shipped with the wall sleeve accessory, the “On-Off” switch disconnects the main power to the unit for servicing or when the unit is to be shut down for an extended period of time.

Figure 120: MicroTech sensor and component locations (top view)
MicroTech® Control Components

7. **Fuse(s)** - Fan motor and controls have the hot line(s) protected by factory installed cartridge type fuse(s).

8. **Control Transformer** - (Located Beneath the Local User Interface Panel). 75 VA 24-volt NEC Class 2 transformer for 24 volt power supply.

9. **Outdoor Air/Return Air Damper Actuator (A1)**: Proportional, direct coupled actuator that spring returns the outdoor air damper to the closed position upon a loss of power.

10. **Face and Bypass Damper Actuator (A2)**: Proportional, direct coupled actuator that is non-spring returned (Model AZQ only, other units are valve control).

11. **Hydronic Coil Low Air Temperature Limit (T6 freeze-estat)** - Factory installed on all units with hydronic (water) coils. The T6 freeze-estat cuts out at 38°F (+/- 3°F) and automatically resets at 45°F (+/- 3°F).

12. **Indoor, Direct Expansion (DX) Coil Refrigerant Temperature Sensor (ICT)**: The sensor is installed on the unit ventilator’s indoor refrigerant coil on the right hand side of the coil “u-bend”. It is used to sense low refrigerant temperatures on the indoor coil.

13. **Outdoor, Direct Expansion (DX) Coil Refrigerant Temperature Sensor (OCT)**: The sensor is installed on the unit ventilator’s outdoor refrigerant coil on the right hand side of the coil “u-bend”. It is used to sense the refrigerant temperature on the outdoor coil.

14. **Room Temperature Sensor (RAT)**: The unit mounted sensor is located in the sampling chamber (front, center section) where room air is continuously drawn through for prompt response to temperature changes in the room. A Remote Wall Mounted Temperature Sensor is available for remote room temperature sensing. (optional).

15. **Discharge Air Temperature Sensor (DAT)**: The sensor is located on the second fan from the right to sense discharge air temperatures.

16. **Outdoor Air Temperature Sensor (OAT)**: The sensor is located in the outdoor air section of the unit before the outdoor air damper. With network applications, the unit mounted sensor can be overridden by a remote sensor through the network.

17. **Outdoor Air Humidity Sensor (optional / standard with expanded and leading edge controls) (OH)**: Unit mounted humidity sensor for units using Expanded outdoor enthalpy economizer or Leading Edge indoor/outdoor, true enthalpy comparison economizer. The sensor is located in the outdoor air section of the unit before the outdoor air damper. With network applications, the unit mounted sensor can be overridden by a remote sensor through the network.

18. **Room Humidity Sensor (optional / standard with expanded controls) (IH)**: Unit mounted humidity sensor for units capable of passive or active dehumidification (Reheat) or with units using Leading Edge indoor/outdoor, truem enthalpy comparison economizer. The sensor is located in the sampling chamber (front, center panel) where room air is continuously drawn through for fast response to humidity changes in the room. With network applications, the unit mounted sensor can be overridden by a remote sensor through the network.

19. **CO₂ Sensor (CO₂) (optional)** - Unit mounted, single beam absorption infrared gas sensor with a sensing range of 0 – 2000 ppm and voltage output of 0 to 10 VDC (100 ohm output impedance). The Pitot Tube sensing device is located in the unit ventilator’s return air stream. The optional CO₂ sensor is used with the UVC’s Demand Control Ventilation feature to vary the amount of outside air based on actual room occupancy. With network applications, the unit mounted sensor can be overridden by a remote sensor through the network.

20. **Control Valve(s) (not shown)** - Optional accessory valve(s) may be either 2-position “End of Cycle” (model AZQ) or modulating (model AZU and AZR), to control the quantity of water through the coil. Available in 2-way or 3-way configurations. Spring return actuators are required for all hot water and steam heating valves. All heating valves are Normally Open (NO).
MicroTech Control Components

Economizer Control Capabilities

- **Basic** – Compares the inside and outside air temperature using item 14 (Room Temperature Sensor) and item 16 (Outdoor Air Temperature Sensor) to determine if outdoor air can be used for “free”, economizer cooling operation.
- **Expanded** – Compares the inside and outside air temperature using item 14 (Room Temperature Sensor) and item 16 (Outdoor Air Temperature Sensor) and calculates the enthalpy of the outside air relative humidity using item 17 (Outdoor Air Humidity Sensor) to determine if outdoor air can be used for “free”, economizer cooling operation.
- **Leading Edge** – True enthalpy comparison economizer that compares the inside and outside air temperature using item 14 (Room Temperature Sensor) and item 16 (Outdoor Air Temperature Sensor) and compares the enthalpy of the inside and outside air relative humidity using item 17 (Outdoor Air Humidity Sensor) and item 18 (Room Humidity Sensor) to determine if outdoor air can be used for “free”, economizer cooling operation.

Economizer for Reheat (Model AZR)

- **Basic** – Uses item 14 (Room Temperature sensor), item 16 (Outdoor Air Temperature Sensor) and item 18 (Room Humidity Sensor) for active dehumidification (reheat) or to determine if outdoor air can be used for “free”, economizer cooling operation.
- **Leading Edge** – Uses item 14 (Room Temperature Sensor), item 16 (Outdoor Air Temperature Sensor), item 17 (Outdoor Air Humidity Sensor) and item 18 (Room Humidity Sensor) for active dehumidification (reheat) or to determine if outdoor air can be used for “free”, economizer cooling operation.

Local User Interface (LUI)

The optional built-in LUI touch pad with digital OLED display is located in the right hand compartment below the top right access door. The 4 x 20 OLED display will provide a variety of information including:

- Operating mode states
- Fan functions
- Room set point temperature
- Current room temperature
- Fault codes for quick diagnostics at the unit

The LUI has a built in menu structure (Pass word protected) with 4 keys and 2 individual LED indicators to adjust the unit ventilator operating parameters shown in the following.

Figure 122: Local user interface (LUI)

Operating Mode States (4)

- **Heat** – Heating and economizer operation only
- **Cool** – Cooling and economizer operation only
- **Fan Only** – Fan operation only
- **Auto** – Unit automatically switches between heating, cooling and economizer operation to satisfy the room load conditions. The current unit state is also displayed.

Fan States (4)

- **High** – (constant speed)
- **Medium** – (constant speed)
- **Low** – (constant speed)
- **Auto (part load, variable air)** – Varies the fan speed automatically to meet the room load conditions whether the unit is in heating, cooling or economizer mode. The current fan speed is also displayed. During low load or normal operation (about 60% of the time) the fans will operate at low speed. When the load increases to an intermediate demand the fans automatically shifts to medium speed. At near design or design load conditions, the fans will operate on high speed. A 10-minute delay between speed changes is incorporated to minimize the awareness of these changes. The outdoor air damper will index based on the fan speed to maintain the required minimum cfm (cubic feet per minute) of ventilation air.

Occupancy Modes (4)

- **Occupied** – Normal, daytime operation where the unit maintains the room set point.
- **Unoccupied** – Night set back operating mode in which the unit responds to a new room set point and cycles to maintain the condition. The fan comes on when heating or cooling is needed and runs until the load is satisfied. The outside air damper is closed during this mode. When a cooling load is satisfied by the refrigerant system, the compressor is de-energized and the Unit Ventilator indoor fan continues to run for a fixed period of time to remove possible frost buildup on the evaporator coil.
- **Stand By Mode** – The unit ventilator maintains the stand by mode set point temperature with the outside air damper closed. The fan runs continuously unless it is configured to cycle in response to the room load.
- **Bypass Mode** – By depressing the Tenant Override Switch (Item 4) the unit is placed back into the Occupied Mode for a predetermined time (default of 120 minutes). This time can be set in 1-minute increments from 1 minute to 240 minutes through the Service Tool or a network.
MicroTech Wall Mounted Sensors

⚠️ WARNING
Rigorously adhere to field wiring procedures regarding proper lockout and tagout of components.

⚠️ WARNING
To avoid electrical shock, personal injury or death:
1. Installer must be qualified, experienced technician.
2. Disconnect power supply before installation to prevent electrical shock and damage to equipment.
3. Make all connections in accordance with electrical wiring diagrams, and in compliance with national and local codes. Use copper conductors only.
4. Do not exceed ratings of the device. This is a low voltage device: Never apply more than 12VAC/VDC to any lead or damage will result.
5. Avoid locations where excessive moisture, corrosive fumes, or vibrations are present.

Note: Avoid placing wall sensor near drafty areas such as doors or windows. Avoid external walls, or dead spots near exposed columns. Avoid direct sunlight on wall sensor.

Figure 123: Wall mounted temperature sensor

When Using A Remote Temperature Sensor
If a decision is made to use a Wall Mounted Temperature Sensor instead of the unit mounted room air sensor then placement of the Remote Wall Mounted Temperature Sensor is critical for proper room temperature sensing (see Figure 124 and Figure 125). The UVC is capable of using one of four remote wall mounted temperature sensors. It is recommended that additional wires be pulled to compensate for potential wire breakage or future options.

- 6-Button Digital Adjustable Sensor (PN 910247458) 8-wires
- 4-Button Digital Adjustable Sensor (PN 910247448) 6-wires
- The Basic Sensor with setpoint adjustment (PN 910247453) 4-wires
- The Basic Sensor (PN 910247450) 3-wires

NOTICE
For sensor terminal wiring details see the installation manual specific to the sensor being used.
Table 41: Max sensor wire length and gauge

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 AWG</td>
<td>800 ft. (244 m)</td>
</tr>
<tr>
<td>16 AWG</td>
<td>500 ft. (152 m)</td>
</tr>
<tr>
<td>18 AWG</td>
<td>310 ft. (94 m)</td>
</tr>
<tr>
<td>20 AWG</td>
<td>200 ft. (61 m)</td>
</tr>
<tr>
<td>22 AWG</td>
<td>125 ft. (38 m)</td>
</tr>
</tbody>
</table>

CAUTION

Static sensitive components. A static discharge while handling electronic circuit boards can cause damage to the components. Discharge any static electrical charge by touching the bare metal inside the main control panel before performing any service work. Never unplug any cables, circuit board terminal blocks, relay modules, or power plugs while power is applied to the panel.

Typical Connections For Temperature Sensor Applications

The low voltage field wiring connections have all been centrally located within the unit ventilator and are easily accessible.

To simplify field connections, multi-pin plugs are factory provided and pre-wired with short wire whips (Figure 126). Each of the wires in these wire whips is capped and should remain capped if not used. See Table 42 on page 65 for wiring the remote mounted temperature sensor to the unit control wiring.

All low voltage field wiring connections must be run in shielded cable with the shield drain wires connected as shown in the field wiring diagrams.

For sensor terminal wiring details see the installation manual specific to the sensor being used.

Sensor Functions

- Display sensor to show room Temperature, fan speed (AUTO/HIGH/MEDIUM/LOW), system mode (HEAT/COOL AUTO/OFF), ALARM, Override and occupancy.

Mounting

Location

Avoid mounting on outside walls or in direct sunlight.

Junction Box, (J-Box)

1. Pull the wire through the wall and out of the junction box, leaving about six inches free.
2. Pull the wire through the hole in the base plate.
3. Secure the back plate to the box using the #6-32 × 1/2 inch mounting screws provided.
4. Screw the plate firmly to the wall so the foam plate backing is compressed about 50%.
5. Terminate the unit according to the guidelines in the Termination section.
6. Attach Cover by latching it to the top of the base, rotating it down and snapping into place.
7. Secure the cover by backing out the lock-down screws using a 1/16” Allen wrench until it is flush with the bottom of the cover.

Figure 127: Junction box mounting (hardware is provided for both junction box and drywall installation.)

Drywall Mounting

1. Place the base plate against the wall where you want to mount the sensor.
2. Mark out the two mounting holes where the unit will be attached to the wall. Drill a 3/16” hole in the center of each mounting hole and insert a drywall anchor into the holes.
3. Drill one 1/2” hole in the middle of the marked wiring through hole area.
4. Pull the wire through the wall and out the 1/2” hole, leaving about six inches free.
5. Pull the wire through the hole in the base plate.
6. Secure the base to the drywall anchors using the #6 × 1” mounting screws provided.

7. Screw the plate firmly to the wall so the foam plate backing is compressed about 50%.

8. Terminate the unit according to the guidelines in the Termination section.

9. Attach cover by latching it to the top of the base, rotating it down and snapping it into place.

10. Secure the cover by backing out the lock-down screws using a 1/16” Allen wrench until it is flush with the sides of the cover.

Note: In any wall-mount application, the wall temperature and the temperature of the air within the wall cavity can cause erroneous readings. The mixing of room air and air from within the wall cavity can lead to condensation, erroneous readings and sensor failure. To prevent these conditions, Daikin recommends sealing the conduit leading to the junction box with fiberglass.

Maintenance

Wipe the display as needed with a damp water only cotton cloth. Do not use any type of cleaner as it may damage the buttons or scratch the display. Do not paint.

Terminations

Daikin Applied recommends using shielded 22AWG for all connections and a separate twisted pair for the power wire connections. The shield should be earth grounded only at the power source. Larger gauge wire may be required for runs greater than 250’.

CAUTION

The AC power wiring at terminals [R] & [S] should be run in a separate twisted shielded pair to avoid fluctuating and inaccurate signal levels induced into the other sensor signal wires. This sensor AC power can be run in the same conduit with the sensor signal wire as long as it’s run in twisted, shielded pair and terminated properly.

All wiring must comply with the National Electric Code (NEC) and local codes. Do NOT run any of this device’s wiring in the same conduit as other AC power wiring. Tests show that fluctuating and inaccurate signal levels are possible when AC power wiring is present in the same conduit as the signal lines. If you are experiencing any of these difficulties, please contact your Daikin representative.
Table 42: Unit ventilator MicroTech board to room temperature sensor wiring

<table>
<thead>
<tr>
<th>MicroTech Base Board</th>
<th>Terminal Block Label</th>
<th>TB1</th>
<th>H6-1</th>
<th>H6-2</th>
<th>H6-3</th>
<th>H6-4</th>
<th>H6-5</th>
<th>H6-6</th>
<th>H6-7</th>
<th>H6-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor 910247458</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Sensor 910247448</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Sensor 910247453</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Sensor 910247450</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>24VAC</th>
<th>Occupancy</th>
<th>Shutdown (Not Used)</th>
<th>Status LED</th>
<th>Setpoint</th>
<th>Unit Mode</th>
<th>Fan Speed</th>
<th>10K RTD</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire</td>
<td>908</td>
<td>907</td>
<td>906</td>
<td>909</td>
<td>912</td>
<td>901</td>
<td>902</td>
<td>911</td>
<td>910</td>
</tr>
</tbody>
</table>

Typical Wiring

- **Terminal Label**

<table>
<thead>
<tr>
<th>R</th>
<th>U</th>
<th>1 (ST)</th>
<th>3 (SP)</th>
<th>2 (FM)</th>
<th>6 (FC)</th>
<th>4 (UTS)</th>
<th>Room Temp Sensor & Tenant Override</th>
<th>5 (GND)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24VAC</td>
<td>Unoccupied</td>
<td>Unit Status Output</td>
<td>Setpoint Adjust</td>
<td>Unit Mode</td>
<td>Fan Speed</td>
<td>Room Temp Sensor & Tenant Override</td>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>

Terminal Designations

- ● = Active Terminal
- ○ = Not Used

Room Temperature Sensor
Electro Mechanical Control Components - Model AZU, AZR

Figure 129: Thermostat control, hot water heating, 460V - 3 Ph

Notes:
1. Make electrical installation in accordance with job wiring schematic, complying with national and local electrical codes.
2. NEC class I wiring-factory mounted night controls connect to BLK & WHT wires. When remote night controls are used they must be connected to BLK & WHT wires and the BLK & WHT wires in the main control box must be disconnected and individually capped.
3. See control and thermostat drawing for additional controls.
4. SW2 contacts 5, 6 and 7 open only when SW2 is in OFF position.
5. SW2 contacts H, M and L.
6. High (2nd stage) compressor rectifier, energized when compressor is on and fan speed is on high.

Refer to unit wiring diagram located on inside of right front panel, for actual wiring. Improper wiring can cause equipment and property damage.

CAUTION
Use copper conductors only. Unit terminals are not designed to accept other types of conductors. Failure to do so may damage the equipment.

DANGER
Disconnect all electrical power before servicing unit to prevent injury or death due to electrical shock.

Symbol	Legend
A1 | Actuator O.A. (Optional)
C1 | Contactor Compressor
F1A/F1C | Fuse - Control
FA/FB | Fuse - Control
F1A/F1C | Fuse - Compressor
HP | Hot Pressure Switch
M | Motor - Fan
M1 | Compressor (2-stage)
M2 | Condensing Motor
R2S | Relay - High (2nd) Stage Compr.
R4 | Relay - Fan (Coil 24 VAC)
R4H | Relay - High Fan Speed (Coil 24 VAC)
R4M | Relay - Med. Fan Speed (Coil 24 VAC)
R4L | Relay - Low Fan Speed (Coil 24 VAC)
R7 | Relay Compressor Lockout
R12 | Relay - Heating
RT6 | Relay Freeze Stat
SW1 | Switch - Disconnect
SW2 | Switch - On-Off, Fan Speeds
TB1 | Terminal Board - Control
TDR1 | Relay Time Delay Compressor (20.5 V)
T6 | Thermostat Cooling Lockout 59°F
T8 | Thermostat Cooling Lockout
T4 | Thermostat Low Temp 28°F
T6 | T'stat - Low Limit 35°F
X1 | Transformer - Motor
X2 | Transformer - Control 75 VA
X4 | Transformer - 460V / 120V
V1 | Valve (EOC) (By Others)
X15 | Transformer - 75 VA

Note: Numbers along right side of schematic designate the location of the contacts by line number.
Electro Mechanical Control Components - Model AZV, AZU, AZR

Figure 130: Remote mounted room air sensor - auto or manual changeover, one-stage AZ units

Night Control Wiring Diagram

NOTE: MAKE ELECTRICAL INSTALLATION IN ACCORDANCE WITH JOB WIRING DIAGRAM COMPLYING WITH NATIONAL AND LOCAL ELECTRICAL CODES.

STEP 7 – UNIT ELECTRICAL AND CONTROL CONNECTIONS
End Panel Dimensions

Figure 131: 1” (25mm) and 6” (152mm) end panel dimensions – self-contained floor unit ventilators

<table>
<thead>
<tr>
<th>All Dim. in inches</th>
<th>16⅛” (422mm) Deep End Panels</th>
<th>19¼” (498mm) Deep End Panels</th>
<th>21¾” (556mm) Deep End Panels</th>
<th>28” (711mm) Deep End Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top View</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End View with No Cut-Out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6” (152mm) End Panel Dimensions

<table>
<thead>
<tr>
<th>All Dim. in inches</th>
<th>16⅛” (422mm) Deep End Panels</th>
<th>19¼” (498mm) Deep End Panels</th>
<th>21¾” (556mm) Deep End Panels</th>
<th>28” (711mm) Deep End Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top View</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End View with No Cut-Out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
End Panel Assembly

Accessory end panels are shipped separately with hardware and kickplate.

The final step of unit installation is attaching the end panels. End panels are required unless the unit has adjoining matching cabinets.

1. Refer to Figure 133 for a 1" thick end panel. Attach two (2) Tinnerman nuts to the top edge of the end panel and two (2) to the bottom end of the unit. Align the end panel with the front and top edges of the unit. Insert through upper mounting holes inside unit end compartment and thread into tinnerman clips on the end panel. Attach the end panel to the unit using four (4) 5/32" hex socket head fasteners provided.

2. Refer to Figure 134 for 6" thick end panel.
 a. Position bracket (YC1934) on wall so angle is 5" from end of unit and near bottom.
 b. Mark and drill required hole for device to fasten bracket to wall (not included).
 c. Attach the bracket to wall.
 d. Attach two (2) Tinnerman nuts to the top edge of the end panel and one (1) to the bottom front of the end frame.
 e. Align the end panel with the front and top edges of the unit. Attach end panel to the unit using three (3) 5/32 " hex socket head fasteners provided. Bracket should prevent movement of panel toward the unit when pressure is applied to the end panel.

Figure 132: Piping stub-up details, 6" end panel

Figure 133: 1" end panel

Figure 134: 6" end panel with provided hardware
VentiMatic™ Shutter Assembly

The Daikin VentiMatic Shutter Assembly is a one-way shutter. It is a continuously variable, gravity-actuated, room exhaust vent that operates in direct response to positive static pressure, opposing any airflow into the room resulting in a slight positive pressure.

CAUTION

For proper operation, the VentiMatic shutter assembly must be mounted on the same wall as the unit ventilator louvers to neutralize wind effect.

When mounting the VentiMatic Shutter(s) on the wall louver, make sure that all moving parts are unobstructed and placed level and plumb for proper operation. If an optional steel interior wall grille is furnished, install as shown in Figure 138 on page 71.

For large units, two VentiMatic Shutters may be mounted side by side on the same louver (Figure 137).

Table 43: Recommended wall opening for ventimatic wall louvers

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>Recommended Wall Openings For Wall Louvers</th>
<th>Maximum Number of VentiMatic Shutters Which Can be Mounted On Standard Louver</th>
<th>VentiMatic Shutter(s) Air Capacity Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length</td>
<td>Height</td>
<td>24" Shutter</td>
</tr>
<tr>
<td>24" (610)</td>
<td>27" (691)</td>
<td>24½" (622)</td>
<td>10½" (267)</td>
<td>1</td>
</tr>
<tr>
<td>36" (914)</td>
<td>39" (991)</td>
<td>36½" (927)</td>
<td>10½" (267)</td>
<td>0</td>
</tr>
<tr>
<td>48" (1219)</td>
<td>51" (1295)</td>
<td>48½" (1232)</td>
<td>10½" (267)</td>
<td>2</td>
</tr>
<tr>
<td>60" (1524)</td>
<td>63" (1600)</td>
<td>60½" (1537)</td>
<td>10½" (267)</td>
<td>1</td>
</tr>
<tr>
<td>72" (1829)</td>
<td>75" (1905)</td>
<td>72½" (1842)</td>
<td>19½" (495)</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 135: Typical VentiMatic™ shutter assembly installation

The VentiMatic shutter assembly mounts on the same wall as the unit ventilator louvers, to neutralize wind effect.

Figure 136: Single VentiMatic shutter and wall louver

Figure 137: Two VentiMatic shutters and wall louver
Figure 138: Louver, VentiMatic shutter, interior wall grille details, dimensions

As Directed By Architect

<table>
<thead>
<tr>
<th>Cement Mortar</th>
<th>7" (178mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4" (19mm) Approx.</td>
<td>Steel Interior Wall Grille(Optional)</td>
</tr>
<tr>
<td>See Note 3 below</td>
<td></td>
</tr>
<tr>
<td>Not Less Than 9" (229mm)</td>
<td></td>
</tr>
<tr>
<td>12 1/2" (314mm)</td>
<td></td>
</tr>
<tr>
<td>1/8" (19mm) Approx.</td>
<td>Cement Mortar</td>
</tr>
</tbody>
</table>

Do Not Block Drain Holes With Caulk or Mortar

Note:
1. Horizontal blade wall louver shown. Vertical blade wall louver also available.
2. The optional exterior grille shown mounted on the wall louver.
3. The optional steel interior wall grille is used to conceal the interior wall opening whenever the Ventimatic shutter is not located behind shelf cabinets. Hardware to mount the interior wall grille is not included.

Step 10 – Prepare Unit Ventilator for Start-up

Post Installation Checklist
- Unit securely fastened to wall sleeve
- Electrical hook-up complete; power, control, wall thermostat (if applicable) in accordance with unit wiring diagram(s)
- Air filter clean and in place
- All access and end panels in place and protective covering removed
- No debris, dust, dirt, or obstructions exist in front of the return air intake grille at the floor
- All installation work has been completed in accordance with applicable local, state and national codes
- Room air fan shaft bearing oiled
- Unit square and level and running smoothly and quietly
- No air infiltration
- Paint nicks and scratches touched up (as required)
- Access space provided for maintenance, service and unit removal
- Shipping carton replaced over unit for protection
- Owner or maintenance personnel provided with a copy of this manual and other manuals/documents shipped with the unit.
- Owner or maintenance personnel instructed on proper operation and maintenance

Remove Battery Shipping Tab
Check that board backup battery shipping tab is removed. To remove, grasp tab and gently pull. Battery should be replaced every 3 years of unit service.

Oiling
Do not attempt to operate the unit fans until the room air fan shaft bearing has been oiled.

Condenser motor and fan shaft bearings are permanently lubricated.

Access to fan shaft bearing is through left top access door. Use a high grade SAE 20 or 30 nondetergent mineral oil. A few drops are sufficient. Do not over oil. Refer to Figure 139 for the oil point.

Note: Unit sizes 044 and 054 have an additional fan shaft bearing located between the first and second fan from the unit left end that should also be oiled.

CAUTION
When oiling the middle fan shaft bearing DO NOT allow oil to drip down on the components located below the bearing.

Figure 139: Fan shaft bearing(s) oil cup location(s)

Room Air Fan Shaft Bearing

Unit Sizes 044 & 054 Bearing, Located Between First and Second Fan from Left End of Unit

Left Front Access Panel

WARNING
Turn off unit before servicing to avoid danger of injury from rotating fans.

NOTICE
Motor manufacturer recommends not oiling the room fan motor.
Filter(s)
Daikin single-use filters are standard on all self-contained unit ventilators, including the AZU, AZR, and AZQ. Permanent wire mesh and renewable media filters are available in lieu of single-use filters.

- Single-use filters feature Amerglas media. They are designed to be used once and discarded.
- Permanent filters are metal filters that may be removed for cleaning and reused numerous times.
- Renewable media filters (Figure 140 on page 72) consist of a heavy painted metal structural frame and renewable Amerglas media.

Turn off the unit (fan speed switch or unit on/off switch is located behind the right front end compartment panel). Remove the center front panel, pull out the filter and replace with a clean filter. Replace the center panel and restart the unit.

Filters should be replaced during the first week of placing into service to prevent dirt carry-over into the internals of the unit and back into the classroom (Figure 140). A periodic filter changeout program should be established. Filters should be checked monthly or more often if conditions indicate. Filters are included in all units.

![Filter installation](image)

Step 11 – Complete Check, Test and Start Procedure

Provide completed Check, Test and Start form to your local Daikin representative and specifying engineer for verification that proper start-up was completed. Please see the Check, Test and Start document beginning on page 74.

The form is also enclosed in the manila envelope located behind the left front access door.

CAUTION

Units must have a filter installed when operating. Operation without a filter can compromise unit performance due to build up of dust and dirt on components.

CAUTION

Dirty or clogged filters can impact unit performance, and damage the unit.

Installer/Owner’s Responsibility Protect your investment - read carefully

Your Daikin express written limited warranty does not cover equipment failures that are caused by misuse, abuse, mis-installation, failure to maintain the unit, etc. Here are a few examples of the types of damage not covered by warranty:

1. Damage resulting from handling during transportation or installation.
2. Damage to compressor resulting from improper electrical phase hook up.
3. Progressive damage to unit from failure to check and test at start-up.
4. Damage to electronic or electrical components from incorrect or fluctuating power supply, stray static electricity, or building automation network inputs.
5. Inaccessibility of unit for service or parts installation that prevents proper equipment operation.
6. Damage to aluminum coils and electronic controls, etc., resulting from operating the unit while building maintenance cleaning agents are in use.
7. Damage resulting from freezing water or condensate, inadequate or interrupted water supply, use of corrosive water, rearrangement of unit piping system, fouling or restriction of the water circuit by foreign material.
8. Damage caused by not cleaning or replacing filters.
9. Damage resulting from failure to keep evaporator coil and intake clean.
10. Damage caused by accident, alteration of the unit design or tampering.

Please complete and return the Check, Test and Start document beginning on page 74 immediately to protect your warranty.
Table 44: Unit ventilator (floor type) data plate - nomenclature

<table>
<thead>
<tr>
<th>Category</th>
<th>Code Item</th>
<th>Code Option</th>
<th>Code Designation & Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Category</td>
<td>1</td>
<td>1</td>
<td>U Unit Ventilators</td>
</tr>
<tr>
<td>Model Type</td>
<td>2</td>
<td>2-4</td>
<td>AZU Air Source DX, Valve Heating</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AZR Air Source DX, Valve Reheat</td>
</tr>
<tr>
<td>Design Series</td>
<td>3</td>
<td>5</td>
<td>9 Design J</td>
</tr>
<tr>
<td>Nominal Capacity</td>
<td>4</td>
<td>6-8</td>
<td>024 24,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>036 36,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>044 44,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>054 54,000</td>
</tr>
<tr>
<td>Voltage</td>
<td>5</td>
<td>9</td>
<td>C 208/60/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D 208/60/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G 230/60/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H 230/60/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K 460/60/3</td>
</tr>
<tr>
<td>Coil Options</td>
<td>6</td>
<td>10</td>
<td>G Direct Expansion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H Direct Expansion with Refrigerant Relief Valve</td>
</tr>
<tr>
<td>Heating Options</td>
<td>7</td>
<td>11-12</td>
<td>12 3 Element Low Cap. Electric Heat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13 6 Element Low Cap. Electric Heat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65 1 Row HW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>66 2 Row HW</td>
</tr>
<tr>
<td>Hand Orientation</td>
<td>8</td>
<td>13</td>
<td>Z Not Available</td>
</tr>
<tr>
<td>Controls</td>
<td>9</td>
<td>14-15</td>
<td>## MicroTech Controls (see control code table below)</td>
</tr>
<tr>
<td>CO₂ = Return Air CO₂</td>
<td></td>
<td></td>
<td>Sensor</td>
</tr>
<tr>
<td>Sensor</td>
<td></td>
<td></td>
<td>+ + + +</td>
</tr>
<tr>
<td>Control Features</td>
<td></td>
<td></td>
<td>+ + + +</td>
</tr>
<tr>
<td>Feature Selections</td>
<td></td>
<td></td>
<td>+ + + +</td>
</tr>
<tr>
<td>Open Protocol</td>
<td>BACnet / Stand-Alone</td>
<td></td>
<td>• • • •</td>
</tr>
<tr>
<td></td>
<td>LonMark</td>
<td></td>
<td>• • • •</td>
</tr>
<tr>
<td></td>
<td>DCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO₂ Sensor</td>
<td></td>
<td>• • • •</td>
</tr>
<tr>
<td>Factory-Installed Keypad</td>
<td>LUI</td>
<td></td>
<td>• • • •</td>
</tr>
<tr>
<td>Control Code</td>
<td></td>
<td></td>
<td>+ + + +</td>
</tr>
<tr>
<td>Economizer Control</td>
<td>Basic</td>
<td>B1 B5 B9 BD BH BL BP BT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expanded</td>
<td>E1 E5 E9 ED EH EL EP ET</td>
<td></td>
</tr>
<tr>
<td>Leading-Edge</td>
<td>L1 L5 L9 LD LH LL LP LT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge</td>
<td>10</td>
<td>16-17</td>
<td>AL 16-5/8" Top Bar Grille</td>
</tr>
<tr>
<td>Return Air/Outside Air</td>
<td>11</td>
<td>18-19</td>
<td>22 Return Air Bottom Front/ Outdoor Air Rear</td>
</tr>
<tr>
<td>Power Connection</td>
<td>12</td>
<td>20</td>
<td>G Box With Switch</td>
</tr>
<tr>
<td>Color</td>
<td>13</td>
<td>21</td>
<td>I Antique Ivory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G Soft Gray</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W Off White</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C Cupola White</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B Putty Beige</td>
</tr>
<tr>
<td>SKU Type</td>
<td>14</td>
<td>22</td>
<td>B Standard Delivery</td>
</tr>
<tr>
<td>Product Style</td>
<td>15</td>
<td>23</td>
<td>1 1st Style Change</td>
</tr>
</tbody>
</table>
Check, test & start procedure for Unit Ventilators

This form must be completely filled out and returned to, Daikin Warranty Department within ten days in order to comply with the terms of the Daikin Applied warranty. Forms should be returned to Daikin Applied Warranty Department, P.O. Box 920, Auburn, NY 13021-0820.

Sales Office: ________________________ S.O.: ________________________ Date Started: ________________________
Job Name: ________________________ G.O. # ________________________
Job Location: ________________________

Unit Location: ________________________ Unit Tagging: ________________________
Model No: ________________________ Serial No.: ________________________
Supply Voltage: L1/L2 __________ L2/L3 __________ L3/L1 __________ Rated: ________________________
Room Fan Motor Amps: T1: __________ RPM __________ Nameplate Rating: ________________________

I. Initial check
A. Does electrical service correspond to unit nameplate? ____________________________ Yes ☐ No ☐
B. Are all electrical power connections tight? ____________________________ Yes ☐ No ☐
C. Does all field wiring conform to unit electrical schematic? ____________________________ Yes ☐ No ☐
D. Is unit installed per IM bulletin? ____________________________ Yes ☐ No ☐
E. Cabinet paint O.K.? ____________________________ Yes ☐ No ☐
F. Cabinet bent? ____________________________ Yes ☐ No ☐
G. Cabinet bent? ____________________________ Yes ☐ No ☐
H. Do outdoor and indoor fans turn freely? ____________________________ Yes ☐ No ☐
I. Are all set screws on outdoor and indoor fan couplings tight? ____________________________ Yes ☐ No ☐
J. Are end bearing bolts on outdoor and indoor fan shaft tight? ____________________________ Yes ☐ No ☐
K. Have the fan shaft end bearing and room fan motor been oiled (if applicable)? ____________________________ Yes ☐ No ☐
L. Are outdoor air and return air dampers operating properly? ____________________________ Yes ☐ No ☐
M. Is the filter clean? ____________________________ Yes ☐ No ☐
N. Is there excessive noise or vibration? ____________________________ Yes ☐ No ☐
If Yes, corrective action (if any) __

II. Controls check
A. Does the unit have Daikin controls (MicroTech)? ____________________________ Yes ☐ No ☐
If No, control company __
B. Condensate disposal system operating O.K. (drainless AED)? ____________________________ Yes ☐ No ☐
C. Does unit start and perform per sequence of operation as stated in OM? ____________________________ Yes ☐ No ☐
D. If the unit has a unit mounted sensor, has the insulation been removed from the sampling chamber inlet? ____________________________ Yes ☐ No ☐
E. Are all sensors installed and insulated properly? ____________________________ Yes ☐ No ☐
F. If the unit has MicroTech controls, room setpoint: _______°F Deadband 6° or _______°F

III. Refrigeration system
A. Has all field piping been leak tested to 100 psig (AVS, AVV, AVR, AHF, AHV & AHR) ____________________________ Yes ☐ No ☐
B. Is expansion valve bulb properly installed and insulated ____________________________ Yes ☐ No ☐
C. High pressure control cutout (if applicable) _________ psig ____________________________ Yes ☐ No ☐
D. Crankcase heater operating O.K.? ____________________________ Yes ☐ No ☐
E. Reversing valve operating O.K.? ____________________________ Yes ☐ No ☐
F. Emergency heat operating O.K.? ____________________________ Yes ☐ No ☐
G. Piping correct (AVS, AVV, AVR, AHF, AHV & AHR to remote condensing unit)? ____________________________ Yes ☐ No ☐
H. Checked for refrigerant leaks? ____________________________ Yes ☐ No ☐

IV. Hydronic piping check
A. Is unit piping correct (the remainder of this section applies only to units with Daikin controls)? ____________________________ Yes ☐ No ☐
B. Is the modulating control valve(s) piped correctly (valve controlled units)? ____________________________ Yes ☐ No ☐
C. Is the modulating control valve(s) placed in the upright position (valve controlled units)? ____________________________ Yes ☐ No ☐
D. Is 2 - position control valve(s) piped correctly (face and bypass)? ____________________________ Yes ☐ No ☐

V. Start-up (Readings must be taken at full load conditions)
Check, test & start procedure for Unit Ventilators

<table>
<thead>
<tr>
<th>A. Outdoor Fan Motor Amps:</th>
<th>T1 ______</th>
<th>Nameplate Rating: _______________</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Compressor Amps (Cig):</td>
<td>T1 ______</td>
<td>T2 ______</td>
</tr>
<tr>
<td>C. Compressor Amps (Htg):</td>
<td>T1 ______</td>
<td>T2 ______</td>
</tr>
<tr>
<td>D. Refrigerant Pressures Htg./Cig.:</td>
<td>Suction:_______ / _______</td>
<td>Discharge:_______ / _______</td>
</tr>
<tr>
<td>E. Refrigerant Temperature Htg./Cig.:</td>
<td>Suction:°F/°F</td>
<td>Discharge:°F/°F</td>
</tr>
<tr>
<td>F. O.A.Temp.: _______°F</td>
<td>Super Heat: _______°F</td>
<td>Subcooling: _______°F</td>
</tr>
<tr>
<td>G. R.A. Temp. Htg./Cig.: °F/°F</td>
<td>Discharge Air Temp.: °F/°F</td>
<td></td>
</tr>
<tr>
<td>H. Electric Htg. Amp:</td>
<td>L1 ______</td>
<td>L2 ______</td>
</tr>
<tr>
<td>I. Water Temperature Htg./Cig.:</td>
<td>In °F/°F</td>
<td>Out °F/°F</td>
</tr>
</tbody>
</table>

VI. Performed by:

Company: __

Name: __

Title: __

Signature: __

Date: __

Comments: __

__

__

__

__

__

Service Technician: ___

Contractor Representative: __

www.DaikinApplied.com 75 IM 1065-4
Daikin Applied Training and Development

Now that you have made an investment in modern, efficient Daikin equipment, its care should be a high priority. For training information on all Daikin HVAC products, please visit us at www.DaikinApplied.com and click on Training, or call 540-248-9646 and ask for the Training Department.

Warranty

All Daikin equipment is sold pursuant to its standard terms and conditions of sale, including Limited Product Warranty. Consult your local Daikin Applied representative for warranty details. Refer to Form 933-430285Y. To find your local Daikin Applied representative, go to www.DaikinApplied.com.

Aftermarket Services

To find your local parts office, visit www.DaikinApplied.com or call 800-37PARTS (800-377-2787). To find your local service office, visit www.DaikinApplied.com or call 800-432-1342.

This document contains the most current product information as of this printing. For the most up-to-date product information, please go to www.DaikinApplied.com.

Products manufactured in an ISO Certified Facility.