

Installation and Maintenance Manual

Templifier[®] Heat Recovery Water Heaters

Model TGZ, B Vintage 600 to 3100 MBH HFC-134a Refrigerant 60/50 Hz

IM 1137-4

Group: Chiller Part Number: IM1137-4 Date: June 2018 Supersedes: July 2017

Introduction	5
Installation	6
Piping Schematic	. 15
Pressure Drop Data	. 16
Dimensional Drawings	. 19
Physical Data	. 25
Eletrical Data	. 29
Start-Up and Shutdown	. 39
System Maintenance	. 42

Manufactured in an ISO 9001 & ISO 14001 certified facility

©2018 Daikin Applied. Illustrations and data cover the Daikin Applied product at the time of publication and we reserve the right to make changes in design and construction at any time without notice.

Pre-Start Checklist – Scroll Compressor Chillers

Must be completed, signed, and provided to Daikin Applied at least 2 weeks prior to requested start date.

Job Name					
Installation Location					
Customer Order Number					
Model Number(s)					
G.O. Number(s)					
Chilled Water		Yes	No	N/A	Initials
Piping Complete		Tes		N/A	IIIItiais
	tor entering chilled water piping per IM				
Water System filled, flushed and ver					
Pumps installed and operational (ro					
	face/bypass dampers, bypass valves, etc.)				
	flow meets unit design requirements				
Flow switch installed and wired					
Vent installed on evaporator					
Glycol at design %					
Electrical		Yes	No	N/A	Initials
Building controls operational					
*Power leads connected to power b	lock or optional disconnect				
Power leads have been checked for					
All interlock wiring complete and co					
Power applied at least 12 hours before					
Oil heaters energized at least 12 ho	-				
	ansducers) installed and wired properly.				
*Wiring complies with National Elec					
vining complies with National Lieu	linear code and local codes (see notes)				
Remote EXV wired with shielded cal	* *				
	* *	Yes	No	N/A	Initials
Remote EXV wired with shielded cal	* *	Yes	No	N/A	Initials
Remote EXV wired with shielded cal Miscellaneous	ble	Yes	No	N/A	Initials
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off	ping factory reviewed	Yes	No	N/A	Initials
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi	ping factory reviewed eak tested, evacuated and charged	Yes	No	N/A	Initials
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping lo Thermometers, wells, gauges, contr	ping factory reviewed eak tested, evacuated and charged	Yes	No	N/A	Initials
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping lo Thermometers, wells, gauges, contr	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls	Yes	No	N/A	Initials
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping la Thermometers, wells, gauges, contr Minimum system load of 80% capad	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software	Yes	No	N/A	Initials
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capac Document Attached: Technical Brea	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software knowledgement	Yes	No	N/A	Initials
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capace Document Attached: Technical Brea Document Attached: Final Order Act Document Attached: Remote piping Notes: The most common problems delaying	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software knowledgement g approval g start-up and affecting unit reliability are:				
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capac Document Attached: Technical Brea Document Attached: Final Order Act Document Attached: Remote piping Notes: The most common problems delayin 1. Field installed compressor motor powe	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software knowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa				
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capace Document Attached: Technical Brea Document Attached: Final Order Act Document Attached: Remote piping Notes: The most common problems delaying	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software knowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa				
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capac Document Attached: Technical Brea Document Attached: Final Order Ac Document Attached: Remote piping Notes: The most common problems delayir 1. Field installed compressor motor powe type of conductors and conduits install a. From Power supply to chiller* Refer to NFPA 70-2017, Article 440.35	ping factory reviewed eak tested, evacuated and charged ol, etc., installed eity available for testing/adjusting controls akdown from Selection Software eknowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa ed:				
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capac Document Attached: Technical Brea Document Attached: Final Order Ac Document Attached: Remote piping Notes: The most common problems delayir 1. Field installed compressor motor powe type of conductors and conduits install a. From Power supply to chiller* Refer to NFPA 70-2017, Article 440.35 2. Remote Evaporator piping incomplete or i	ping factory reviewed eak tested, evacuated and charged ol, etc., installed eity available for testing/adjusting controls akdown from Selection Software eknowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa ed:	les represent	ative*. S		
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capac Document Attached: Technical Brea Document Attached: Final Order Ac Document Attached: Remote piping Notes: The most common problems delayir 1. Field installed compressor motor power type of conductors and conduits installe a. From Power supply to chiller * Refer to NFPA 70-2017, Article 440.35 2. Remote Evaporator piping incomplete or i 3. Items on this list incorrectly acknowledged	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software knowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa ed: ncorrect. Provide approved piping diagrams. I resulting in delayed start and possible extra expenses incurred	les represent	ative*. S	tate size, n	
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capac Document Attached: Technical Brea Document Attached: Final Order Ac Document Attached: Remote piping Notes: The most common problems delayir 1. Field installed compressor motor powe type of conductors and conduits installe a. From Power supply to chiller* Refer to NFPA 70-2017, Article 440.35 2. Remote Evaporator piping incomplete or i 3. Items on this list incorrectly acknowledged	ping factory reviewed eak tested, evacuated and charged ol, etc., installed eity available for testing/adjusting controls akdown from Selection Software eknowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa ed: ncorrect. Provide approved piping diagrams. I resulting in delayed start and possible extra expenses incurred Daikin Applied Sa	les represent	ative*. S	tate size, n	
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capac Document Attached: Technical Brea Document Attached: Final Order Act Document Attached: Remote piping Notes: The most common problems delayin 1. Field installed compressor motor power type of conductors and conduits installe a. From Power supply to chiller * Refer to NFPA 70-2017, Article 440.35 2. Remote Evaporator piping incomplete or i 3. Items on this list incorrectly acknowledged Contractor Representative Signed:	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software knowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa ed: ncorrect. Provide approved piping diagrams. I resulting in delayed start and possible extra expenses incurred Daikin Applied Sa Signed:	les represent	ative*. S	tate size, n	
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping la Thermometers, wells, gauges, contr Minimum system load of 80% capace Document Attached: Technical Breat Document Attached: Final Order Act Document Attached: Remote piping Notes: The most common problems delayir 1. Field installed compressor motor power type of conductors and conduits install a. From Power supply to chiller * Refer to NFPA 70-2017, Article 440.35 2. Remote Evaporator piping incomplete or i 3. Items on this list incorrectly acknowledged Contractor Representative Signed: Name:	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software knowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa ed: ncorrect. Provide approved piping diagrams. I resulting in delayed start and possible extra expenses incurred Daikin Applied Sa Signed: Name:	les represent	ative*. S	tate size, n	
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping le Thermometers, wells, gauges, contr Minimum system load of 80% capac Document Attached: Technical Brea Document Attached: Final Order Act Document Attached: Remote piping Notes: The most common problems delayin 1. Field installed compressor motor power type of conductors and conduits installe a. From Power supply to chiller * Refer to NFPA 70-2017, Article 440.35 2. Remote Evaporator piping incomplete or i 3. Items on this list incorrectly acknowledged Contractor Representative Signed:	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software knowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa ed: ncorrect. Provide approved piping diagrams. I resulting in delayed start and possible extra expenses incurred Daikin Applied Sa Signed:	les represent	ative*. S	tate size, n	
Remote EXV wired with shielded cal Miscellaneous Unit control switches all off Remote Evaporator / Condenser Pi All refrigerant components/piping la Thermometers, wells, gauges, contr Minimum system load of 80% capace Document Attached: Technical Breat Document Attached: Final Order Act Document Attached: Remote piping Notes: The most common problems delayir 1. Field installed compressor motor power type of conductors and conduits install a. From Power supply to chiller * Refer to NFPA 70-2017, Article 440.35 2. Remote Evaporator piping incomplete or i 3. Items on this list incorrectly acknowledged Contractor Representative Signed: Name:	ping factory reviewed eak tested, evacuated and charged ol, etc., installed ity available for testing/adjusting controls akdown from Selection Software knowledgement g approval g start-up and affecting unit reliability are: r supply leads too small. Questions: Contact the local Daikin sa ed: ncorrect. Provide approved piping diagrams. I resulting in delayed start and possible extra expenses incurred Daikin Applied Sa Signed: Name:	les represent	ative*. S	tate size, n	

©2018 Daikin Applied

Х

Cut Here

This manual provides installation, operation, and maintenance information for the Daikin TGZ Templifier[®] Heat Recovery Scroll Water Heater with the MicroTech[®] II controller. Complete operating and maintenance information is in OMM 1136.

NOTE: Installation and maintenance are to be performed only by qualified personnel who are familiar with local codes and regulations, and experienced with this type of equpuipment.

Electric shock hazard. Improper handling of this equipment can cause personal injury or equipment damage. This equipment must be properly grounded. Connections to and service of the MicroTech[®] II control panel must be performed only by personnel that are knowledgeable in the operation of the equipment being controlled.

Static sensitive components. A static discharge while handling electronic circuit boards can cause damage to the components. Discharge any static electrical charge by touching the bare metal inside the control panel before performing any service work. Never unplug any cables, circuit board terminal blocks, or power plugs while power is applied to the panel.

When moving refrigerant to/from the chiller from an auxiliary tank, a grounding strap must be used. An electrical charge builds when halo-carbon refrigerant travels in a rubber hose. A grounding strap must be used between the auxiliary refrigerant tank and the chiller's end sheet (earth ground), which will safely take the charge to the ground. Damage to sensitive electronic components could occur if this procedure is not followed.

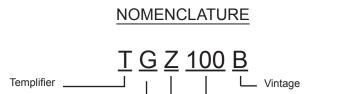
HAZARD IDENTIFICATION INFORMATION

Dangers indicate a hazardous situation, which will result in death or serious injury if not avoided.

Global

Scroll Compressor

Warnings indicate potentially hazardous situations, which can result in property damage, severe personal injury, or death if not avoided.



Cautions indicate potentially hazardous situations, which can result in personal injury or equipment damage if not avoided.

General Description

Daikin TGZ water heaters are scroll compressor refrigeration units that recover heat from warm fluid streams in the evaporator and deliver hot water, at a useful temperature, from the condenser to a heating load. They are designed for indoor installations only and are completely assembled, wired, charged and tested. Each unit consists of four or six (depending on unit size) scroll compressors, evaporator (brazed-plate on models 040 through 120 and shell-and-tube evaporators on models 150 to 190), shell-and-tube condenser/heater, and complete refrigerant piping.

There are two refrigerant circuits, each with manual liquid line shutoff valves, charging valves, filter-driers, liquid line solenoid valves, sight glass/moisture indicators, and expansion valves. The electrical control center includes a MicroTech II® control system and other components necessary for dependable automatic operation.

Nominal Cooling Tons

Inspection

When the equipment is received, all items should be carefully checked against the bill of lading to provide a complete shipment. All units must be carefully inspected for damage upon arrival. All shipping damage must be reported to the carrier and a claim must be filed with the carrier. The unit serial number plate should be checked before unloading the unit to be sure that it agrees with the power supply available. Physical damage to unit after acceptance is not the responsibility of Daikin Applied.

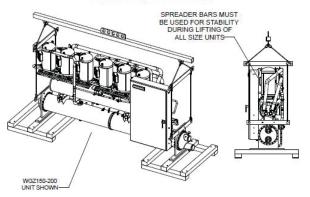
NOTE: Unit shipping and operating weights are given in the Physical Data Tables beginning on page 25

Handling

Every model TGZ water heater is shipped with a full refrigerant charge that is isolated in the condenser by the manual condenser liquid valve and the compressor discharge service valve.

If the unit has been damaged, allowing the refrigerant to escape, there can be danger of suffocation in the equipment area since the refrigerant will displace the air. Be sure to review Environmental Protection Agency (EPA) requirements if damage has occurred. Avoid exposing an open flame to the refrigerant.

The skid option is strongly recommended for ease of handling and to help prevent damage during installation.



Avoid contact with sharp edges. Personal injury can result.

Improper riggin, lifting, or moving of a unit can result in property damage, severe personal injury or death. Follow rigging and moving instructions carefully. Do not stand beneath the unit while it is lifted or being istalled.

Figure 1: Lifting the Unit

TGZ040-190 / WGZ030-200 RIGGING INSTRUCTIONS

It is recommended that all moving and handling be performed with skids under the unit when possible and that the skids not be removed until the unit is in the final location. When moving the unit, dollies or simple rollers can be used under the skids. Never put the weight of the unit against the control box.

When moving, only apply pressure to the base on the skids, and not to the piping or shells. Avoid dropping the unit at the end of the roll.

If the unit must be hoisted, it is necessary to lift the unit by attaching cables or chains at the lifting holes located on the disposable lifting bars. Spreader bars must be used to protect the control cabinet and other areas of the unit. See Figure 1.

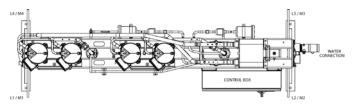
Do not attach slings to piping or equipment. Move unit in the upright horizontal position at all times. Set unit down gently when lowering from the trucks or rollers. See Table 12 on page 24 for total and point weights.

Location

The unit is designed for indoor application and must have equipment room temperature for operating and standby conditions between 40°F to 122°F (4.4°C to 50°C).

Because of the electronic control devices, the units should not be exposed to the weather. A plastic cover over the control box is supplied as temporary protection during shipment. A reasonably level and sufficiently strong floor is required for the unit. If necessary, additional structural members should be provided to transfer the weight of the unit to the nearest beams.

NOTE: Unit shipping and operating weights are available in the weights section starting in Table 12 on page 24


Placing the Unit

The small amount of vibration normally encountered with the water chiller makes this unit particularly desirable for basement or ground floor installations where the unit can be mounted directly to the floor. The floor construction should be such that the unit will not affect the building structure nor will it transmit noise and vibration into the structure.

Vibration Isolators

It is recommended that isolators be used on all upper level installations or in areas where vibration transmission is a consideration.

Figure 2: Isolator Locations

NOTE: Representative model for isolator location numbering only; ordered unit configuration may be different than shown.

Once the unit has been located, set the unit in place and level with a spirit level. When spring-type isolators are required, install springs running under the main unit supports.

The unit should be set initially on shims or blocks at the listed spring free height. When all piping, wiring, flushing, charging, etc., is completed, the springs are adjusted upward to loosen the blocks or shims that are then removed. Refer to Table 12

on page 24 for correct lifting and mounting locations.

Installation of spring isolators requires flexible piping connections and at least three feet of flexible electrical conduit to avoid straining the piping and transmitting vibration and noise.

A rubber anti-skid pad should be used under isolators if holddown bolts are not used.

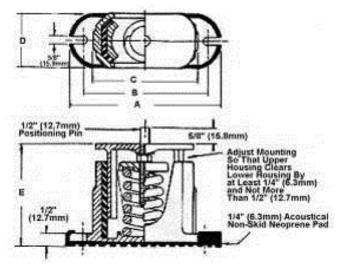
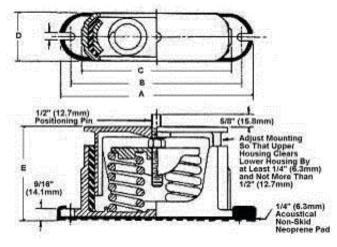
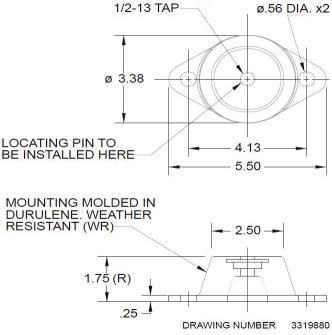
公		R-I-S M	OUNTING L	OCATION	2	SPRING-FLEX MOUNTING LOCATION					
TGZ MODEL	M1 (LEFT- FRONT)	M2 (RIGHT- FRONT)	M3 (RIGHT- REAR)	M4 (LEFT- REAR)	KIT PART NUMBER	M1 (LEFT- FRONT)	M2 (RIGHT- FRONT)	M3 (RIGHT- REAR)	M4 (LEFT- REAR)	KIT PART NUMBER	
040B	RP-3 Gray-WR	RP-3 Gray-WR	RP-3 Gray-WR	RP-3 Gray-WR	332325701	CP1E- ID-900 Dk. Green	CP1E- ID-900 Dk. Green	CP1E- ID-900 Dk. Green	CP1E- ID-900 Dk. Green	332320701	
050B	RP-3 Gray-WR	RP-3 Gray-WR	RP-3 Gray-WR	RP-3 Gray-WR	332325701	CP1E- ID-900 Dk. Green	CP1E- ID-900 Dk. Green	CP1E- ID-900 Dk. Green	CP1E- ID-900 Dk. Green	332320701	
060B	RP-3 Gray-WR	RP-3 Gray-WR	RP-3 Gray-WR	RP-3 Gray-WR	332325701	CP1E- ID-900 Dk. Green	CP1E- ID-900 Dk. Green	CP1E- ID-900 Dk. Green	CP1E- ID-900 Dk. Green	332320701	
080B	RP-4 Brown-WR	RP-4 Brown-WR	RP-4 Brown-WR	RP-4 Brown-WR	332325702	CP2E- ID-1350 Dk. Purple	CP2E- ID-1350 Dk. Purple	CP2E- ID-1350 Dk. Purple	CP2E- ID-1350 Dk. Purple	332320702	
100B	RP-4 Brown-WR	RP-4 Brown-WR	RP-4 Brown-WR	RP-4 Brown-WR	332325702	CP2E- ID-1800 Dk. Green	CP2E- ID-1800 Dk. Green	CP2E- ID-1800 Dk. Green	CP2E- ID-1800 Dk. Green	332320703	
110B	RP-4 Red-WR	RP-4 Red-WR	RP-4 Red-WR	RP-4 Red-WR	332325703	CP2E- ID-1800 Dk. Green	CP2E- ID-1800 Dk. Green	CP2E- ID-1800 Dk. Green	CP2E- ID-1800 Dk. Green	332320703	
120B	RP-4 Red-WR	RP-4 Red-WR	RP-4 Red-WR	RP-4 Red-WR	332325703	CP2E- ID-1800 Dk. Green	CP2E- ID-1800 Dk. Green	CP2E- ID-1800 Dk. Green	CP2E- ID-1800 Dk. Green	332703703	
150B	RP-4 Lime- WR	RP-4 Lime-WR	RP-4 Lime- WR	RP-4 Lime- WR	332325704	CP2E- ID-2400 Gray	CP2E- ID-2400 Gray	CP2E- ID-2400 Gray	CP2E- ID-2400 Gray	332320704	
170B	RP-4 Lime- WR	RP-4 Lime-WR	RP-4 Lime- WR	RP-4 Lime- WR	332325704	CP2E- ID-2400 Gray	CP2E- ID-2400 Gray	CP2E- ID-2400 Gray	CP2E- ID-2400 Gray	332320704	
190B	RP-4 Lime- WR	RP-4 Lime-WR	RP-4 Lime- WR	RP-4 Lime- WR	3323257 <mark>0</mark> 4	CP2E- ID-2400 Gray	CP2E- ID-2400 Gray	CP2E- ID-2400 Gray	CP2E- ID-2400 Gray	332320704	

Table 1: Vibration Mounting Location and Kit Number

NOTE: Refer to Figure 2 on page 6 for locating isolators.

NOTE: For spring-flex mountings, CP2E have two springs per isolator housing, CP1E have one spring per housing.

Figure 3: Spring Flex Mounting (CP-1) Isolator Dimensions

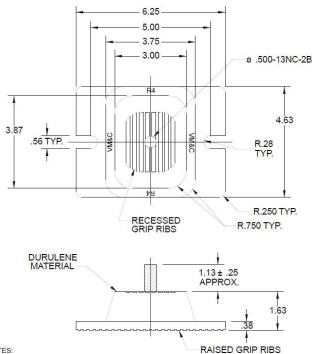

Figure 4: Spring Flex Mounting (CP-2) Isolator Dimensions

Figure 5: Rubber-in-Shear Mounting (RP-3) Isolator Dimensions

Figure 6: Rubber-in-Sheer Mounting (RP-4) Isolater Dimensions

NOTES

2.

- MOUNT MATERIAL TO BE DURULENE RUBBER. 1 MOLDED STEEL AND ELASTOMER MOUNT FOR OUTDOOR SERVICE CONDITIONS.
- DRAWING NUMBER 3314814

3. RP-4 MOUNT VERSION WITH STUD IN PLACE.

ALL DIMENSIONS ARE IN DECIMAL INCHES

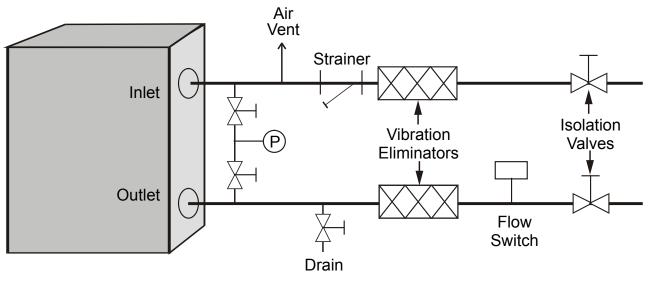
Chilled Water Piping

To prevent damage to the evaporator and potential chiller failure, a supply strainer is required in the inlet water piping which connects to this evaporator. This strainer must be installed prior to operation of the chilled liquid pumps.

NOTE: Since the Templifier evaporator and/or condenser may have to be valved off for cleaning or repair, it may be desirable to pipe a bypass around them so that system source and hot water flow is not interrupted.

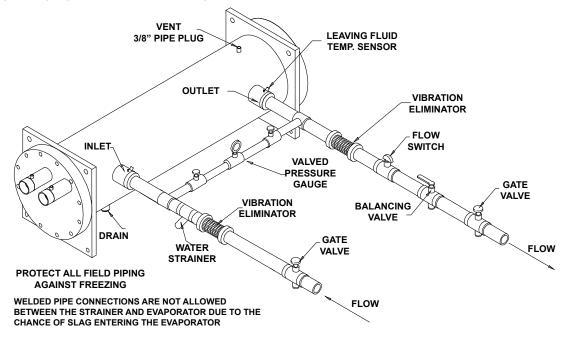
Field installed water piping to the chiller must include:

- A cleanable strainer installed at the water inlet to the evaporator to remove debris and impurities before they reach the evaporator. Install cleanable strainer within 5 feet (1500 mm) of pipe length from the evaporator inlet connection and downstream of any welded connections (no welded connections between strainer and evaporator).
- TGZ models require a strainer with perforations no larger than 0.062" (1.6 mm) diameter. See the Inlet Strainer Guidelines on Table 2 on page 11 for more information.
- A water flow switch must be installed in the horizontal piping of the supply (evaporator outlet) water line to avoid evaporator freeze-up under low or no flow conditions. The flow switch may be ordered as a factory-installed option, a field-installed kit, or may be supplied and installed in the field.
- Piping for units with brazed-plate evaporators must have a drain and vent connection provided in the bottom of the lower connection pipe and to the top of the upper


Figure 7: Typical Piping for Brazed-Plate Evaporator

connection pipe, respectively. See Figure 7. These evaporators do not have drain or vent connections due to their construction.

- Purge air from the water system before unit start-up to provide adequate flow through the evaporator.
- Adequate piping support, independent from the unit, to eliminate weight and strain on the fittings and connections.


It is **recommended** that the field installed water piping to the chiller include:

- Thermometers at the inlet and outlet connections of the evaporator.
- Water pressure gauge connection taps and gauges at the inlet and outlet connections of the evaporator for measuring water pressure drop.
- Shutoff valves are necessary to isolate the unit from the piping during unit servicing.
- Minimum bends and changes in elevation to minimize pressure drop.
- An expansion tank and regulating valve to maintain adequate water pressure. Tank becomes required for closed loop systems based on water volume and temperature ranges.
- Vibration eliminators in both the supply and return water lines to reduce transmissions to the building.
- Flush the system water piping thoroughly before making connections to the unit evaporator.
- Piping insulation, including a vapor barrier, helps prevent condensation and reduces heat loss.
- Regular water analysis and chemical water treatment for the evaporator loop is recommended immediately at equipment start-up.

WELDED PIPE CONNECTIONS ARE NOT ALLOWED BETWEEN THE STRAINER AND EVAPORATOR DUE TO THE CHANCE OF SLAG ENTERING THE EVAPORATOR

Figure 8: Typical Piping for Shell and Tube Evaporator

Groove Coupling / Flow Switch Warning

All evaporators and condensers have OGS-type grooved water connections (adhering to Standard AWWA C606) or optional flange connections. The installing contractor must provide matching mechanical connections. PVC piping should not be used.

On units utilizing shell-and-tube evaporator vessels and factory-mounted flow switches and flange connections (grooveto-flange adaptors or weld-on flanges), relocating the flow switch is required to allow for possible future replacement. The flange will interfere with unscrewing the switch. The following procedure is recommended before installing a flange to avoid interference:

1.Remove the flow switch and plug the switch opening in the nozzle.

2.Install the groove-to-flange adaptor or weld on flange.

3.Relocate the flow switch in the water piping outside the flange close enough to it that the wire leads will reach and the switch can still be unscrewed.

Source Water Piping

The system water piping must be flushed thoroughly prior to making connections to the unit evaporator. Lay out the water piping so the source water circulating pump discharges into the evaporator inlet.

A cleanable strainer must be placed in the water lines at the water inlet to the evaporator to remove debris and impurities before they reach the evaporator. Failure to do so will cause damage to the equipment. Please refer to Table 2 on page 11 for model-specific diameter sizes.

\land CAUTION

Templifier Models TGZ 040 - TGZ 120 must have clean source water from a closed and treated loop going to the brazed-plate evaporator. For open water loop applications, an intermediate heat exchanger between the source water and evaporator is required. Failure to provide a clean, closed water loop can cause equipment failure and possible revocation of the unit warranty.

Templifier evaporator water can come from various sources and care must be exercised to avoid sources that can cause corrosion, fouling, or accumulation of debris in the heat exchanger. Borderline cases will require a careful and rigorously performed maintenance schedule.

Inlet Strainer Guidelines

An inlet water strainer must be installed in the chilled water piping before the evaporator inlet. Two paths are available to meet this requirement:

1. A field-installed kit shipped loose with the unit that consists of:

- Y-type area strainer with 304 stainless steel perforated basket, groove pipe connections and strainer cap. Refer to Table 2
- Extension pipe with two Schrader fittings that can be used for a pressure gauge and thermal dispersion flow switch. The pipe provides sufficient clearance from the evaporator for strainer basket removal.
- ½-inch blowdown valve
- Two grooved clamps

The strainer is sized per Table 2. Connection sizes are given in Dimensions beginning on Figure 17 on page 19.

2. A field-supplied strainer that meets specification and installation requirements of this manual on www.DaikinApplied. com.

Table 2:	Evaporator	Characteristics
----------	------------	-----------------

Unit Size	040B-120B	150B-190B
Evaporator	Brazed Plate	Shell-and tube
Materials	Stainless Steel, Copper	Carbon Steel, Copper
Max Perf. Size	No larger than 0.062" dia.	No larger than 0.125" dia.
Cleaning	Chemical	Chemical

Inlet and outlet connections are clearly marked on the unit and also appear on the dimension drawings, beginning with Figure 17 on page 19. Drain connections should be provided at all low points in the system to permit complete drainage. Air vents should be located at the high points in the system to purge out air. A vent connection, located on top of the evaporator vessel, permits the purging of air out of the evaporator. Air purged from the water system prior to unit start-up provides adequate flow through the vessel and prevents safety cutouts on the freeze protection. System pressure should be maintained by using a properly sized expansion tank.

Pressure gauges should be installed in the inlet and outlet water lines to the evaporator. Pressure drop through the evaporator should be measured to calculate proper gpm (L/s) as specified in the Pressure Drop tables starting with Figure 14 on page 16.

Source water piping may have to be insulated (depending on its temperature) to reduce heat loss and prevent condensation if cold water is used. If cooling tower water is used, insulation may not be necessary. Complete unit and system leak tests should be performed prior to insulating the water piping. Insulation with a vapor barrier is recommended. If the vessel is insulated, the vent and drain connections must extend beyond the proposed insulation thickness for accessibility. If the unit operates year-round, or if the system is not drained for the winter, the chilled water piping exposed to outdoor ambient should be protected against freezing by wrapping the lines with a heater cable.

Source/Hot Water Thermostat

The source water temperature sensor is factory installed in the leaving water connection on the evaporator. The controlling hot water sensor is in the leaving condenser connection. A sensor is also located in the entering water connection in order to measure the condenser Delta-T. Care should be taken not to damage the sensor cable or lead wires when working around the unit. It is also advisable to check the lead wire before running the unit to be sure that it is firmly anchored and not rubbing on the frame or any other component.

If the sensor is ever removed from the well for servicing, care must be taken as not to wipe off the heat conducting compound supplied in the well. The units can be switched from heating to cooling. In the cooling mode they are controlled by a thermistor in the leaving evaporator connection, in the heating mode by the leaving condenser thermistor.

Flow Switch

A water flow switch must be mounted in the evaporator and condenser leaving water lines to prove adequate water flow to the vessels before the unit can start. This will safeguard against slugging the compressors on startup. It also serves to shut down the unit in the event that water flow is interrupted to guard against evaporator freeze-up.

A flow switch is available from Daikin Applied (part # 01750330). It is a "paddle" type switch and adaptable to any pipe size from 1" (25mm) to 6" (152mm) nominal. Certain minimum flow rates are required to close the switch and are listed in Table 3. Installation should be as shown on Figure 9. See Figure 28 on page 31 for terminal locations. The normally open contacts of the flow switch should be wired between these two terminals. There is also a set of normally closed contacts on the switch that could be used for an indicator light or an alarm to indicate when a "no flow" condition exists.

NOTE: Install per the vendor instructions and calibrate to a safe setting based on the application design flow.

1. The flow arrow must be pointed in the correct direction.

2. Provide a straight length of pipe before and after the flow switch of at least five times the pipe diameter.

3. Trim flow switch paddle if needed to fit the pipe diameter. Make sure paddle does not hang up in pipe.

Make sure the arrow on the side of the switch is pointed in the direction of flow. Install per manufacturer's instructions. Incorrect installation will cause improper operation and possible evaporator damage.

Table 3: Flow Switch Minimum Flow Rates

Nominal Pipe Size Inches (mm)	Minium Req'd Flow to Active Switch - GPM (l/s)
2 (50.8)	18.8 (1.2)
2 1/2 (63.5)	24.3 (1.5)
3 (76.2)	30.0 (1.9)
4 (101.6)	39.7 (2.5)
5 (127.0)	58.7 (3.7)
6 (152.4)	79.2 (5.0)

Figure 9: Flow Switch

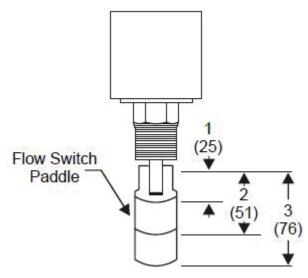
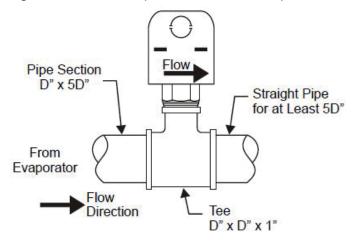



Figure 10: Flow Switch (view from end of cooler)

Glycol Solutions

The use of glycol in Templifier systems is rare, but if used, the system glycol capacity, glycol solution flow rate in gpm (Lps), pressure drop through the cooler, and system pressure drop can be calculated using the following formulas and table.

1. Capacity — Capacity is reduced from that with plain water. To find the reduced value multiply the unit's water system capacity by the capacity correction factor C, as shown in Table 4 and Table 5, to find the unit's capacity in the glycol system.

2. GPM —To determine evaporator gpm (or ΔT) knowing ΔT (or gpm) and capacity:

Glycol GPM =
$$\frac{24 x Glycol Capacity}{\Delta T} x G From Tables$$

3. Pressure Drop — To determine glycol pressure drop through

the cooler, enter the proper water pressure drop curve, beginning on page 16, at the water flow. Multiply the water pressure drop found there by P to obtain corrected glycol pressure drop.

4. To determine glycol system kW, multiply the water system kW by factor K. Test coolant with a clean, accurate glycol solution hydrometer to determine the freezing point. Obtain percent glycol from the freezing point table below.

Daikin Applied encourages a minimum glycol concentration of 25% be provided on all glycol applications. Glycol concentrations below 25% have too little inhibitor content for long-term corrosion protection of ferrous metals.

NOTE: The effect of glycol in the condenser is negligible and there is no capacity derate. There is a significant increase in pressure drop.

Table 4: Ethylene Glycol

	Freezi	ng Point				P (Pressure
% Glycol	°F	°C	C (Capacity)	K (Power)	G (Flow)	Drop)
20	18	-8	0.982	0.992	1.04	1.129
30	7	-14	0.972	0.986	1.074	1.181
40	-7	-22	0.961	0.976	1.121	1.263
50	-28	-33	0.946	0.966	1.178	1.308

Table 5: Propylene Glycol

	Freezi	ng Point				P (Pressure
% Glycol	۴F	°C	C (Capacity)	K (Power)	G (Flow)	Drop)
20	19	-7	0.975	0.985	1.028	1.147
30	9	-13	0.962	0.978	1.05	1.248
40	-5	-21	0.946	0.971	1.078	1.366
50	-27	-33	0.929	0.965	1.116	1.481

Table 6: Burst Protection

Percent Volume Glycol Concentration Required								
Temp F (C)	For Burst Protection							
	Ethylene Glycol	Propylene Glycol						
20 (6.7)	11	12						
10 (-12.2)	17	20						
0 (-17.8)	22	24						
-10 (-23.3)	26	28						
-20 (-28.9)	30	30						
-30 (-34.4)	30	33						
-40 (-40.0)	30	35						
-50 (-45.6)	30	35						
-60 (-51.1)	30	35						

Do not use automotive grade antifreeze. Industrial grade glycols must be used. Automotive antifreeze contains inhibitors which will cause plating on the copper within the unit evaporator. The type and handling of glycol used must be consistent with local codes.

Condenser Water Piping

Arrange the condenser water so the water enters the bottom connection of the condenser. The condenser water will discharge the condenser from the top connection. Failing to arrange the condenser water as stated above will negatively affect the capacity and efficiency. Note that the condensers are shipped as either two-pass (10 to 15-degree F Delta-T) or fourpass (15 to 40-degree F Delta-T). For 2-pass, the connections are on the vertical centerline of the condenser. For 4-pass, they are off to one side.

Pressure gauges should be installed in the inlet and outlet water lines to the condenser. Pressure drop through the condenser should be measured to determine gpm (L/s) from pressure drop curves starting on page 16. Vibration eliminators are recommended in both the supply and return water lines.

Templifier hot water systems usually have a supplementary heater located after (downstream) of the Templifier condenser to either boost the hot water temperature or to function as a standby heater.

Care should be exercised to avoid overly warm water coming back to the Templifier from the system and causing a relief valve discharge. This is true whether the unit is running or off. Maximum temperature is 160°F.

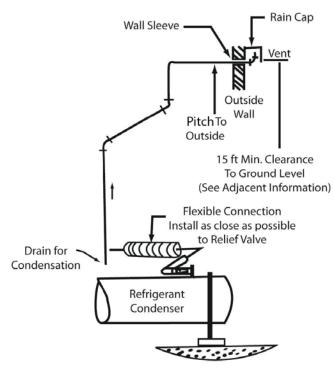
Some jurisdictions require double heat exchange walls between refrigerant and potable water. Potable water run directly through a condenser has only one heat exchange wall (the condenser tube), and certain jurisdictions may require an intermediate heat exchanger.

Refrigerant Relief Valve Piping

Relief valves are located in the following location and require piping per code, usually to the outside of the building. All valve connections are 5/8-inch flare. There is:

- One relief valve in the suction piping of each of two circuits
- One relief valve on the shell of each of two condenser circuits
- One additional valve in the discharge piping of circuits with 30 HP compressors

Table 7: Relief Valve Piping


TGZ Model Size	Suction Line Total	Cond. Shell Total	30 HP Disch. Line Total	Total per Unit
040B, 050B, 060B, 080B, 100B, 150B	2	2	0	4
110B, 170B	2	2	1	5
120B, 190B	2	2	2	6

The current ANSI/ASHRAE Standard 15 specifies that pressure relief valves on vessels containing Group 1 refrigerant (R-134a) "shall discharge to the atmosphere at a location not less than 15 feet (4.6 meters) above the adjoining ground level and not less than 20 feet (6.1 meters) from any window, ventilation opening or exit in any building." The piping must be provided with a rain cap at the outside terminating point and a drain at the low point on the vent piping to prevent water buildup on the atmospheric side of the relief valve. In addition, a flexible pipe section should be installed in the line to eliminate any piping stress on the relief valve(s).

The size of the discharge pipe from the pressure relief valve shall not be less than the size of the pressure relief outlet. When two or more vessels are piped together, the common header and piping to the atmosphere shall not be less than the sum of the area of the relief valve outlets connected to the header. Fittings should be provided to permit vent piping to be easily disconnected for inspection or replacement of the relief valve.

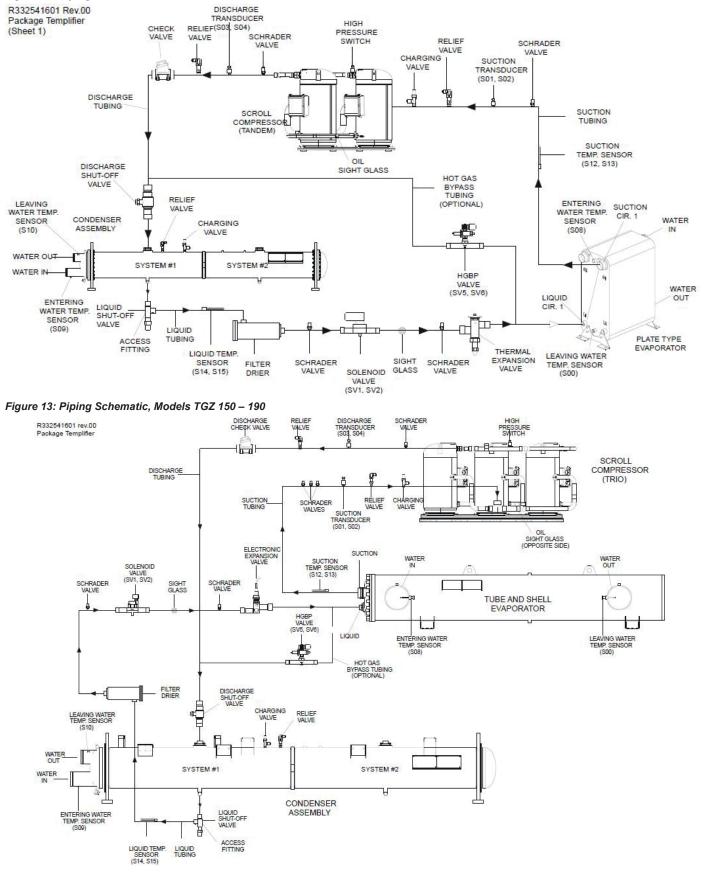
NOTE: Provide adequate fittings in piping to permit repair or replacement of relief valve.

Figure 11: Relief Valve Piping

Heating and Cooling Units

Templifiers can be arranged and controlled to act as either a water chiller or a water heater. These systems vary considerably in the specifics of the piping arrangement. Care must be exercised when changeover occurs to avoid mixing water streams that could possibly contaminate a water system. For example, a unit can have chilled water in the evaporator and tower water in the condenser when in the cooling mode. Changeover to heating could put tower water through the evaporator and hot water (possibly potable water) through the condenser. This could introduce tower water into the chilled water system and into the hot water system and should be avoided.

Water Pressure Drop


The vessel flow rates must fall between the minimum and maximum values shown on the appropriate evaporator and condenser curves beginning on page 16. Flow rates below the minimum values shown will result in laminar flow that will reduce efficiency, cause erratic operation of the expansion valve, and could cause low temperature cutoffs. On the other hand, flow rates exceeding the maximum values shown can cause erosion on the evaporator water tubes.

Measure the water pressure drop through the vessels at field installed pressure taps. It is important not to include valves or strainers in these readings.

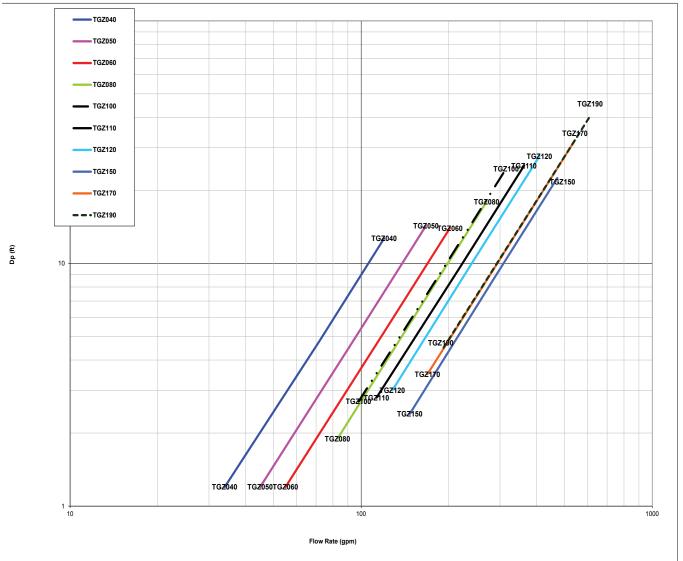

The condenser flow rate will determine whether 2-pass or 4-pass condensers are used, according to Table 8

 Table 8: Condenser Flow Rate

Condenser ∆-T	Passes	Flow Rate
10 - 15° F	2-Pass	High
15 - 40° F	4-Pass	Low

Figure 12: Piping Schematic, Models TGZ 040 – 120

Figure 14: Evaporator Pressure Drop

Table 9: Evaporator Pressure Drop

		Minimum Flow Rate				Nominal Flow Rate				Maximum Flow Rate			
TGZ Unit Evap		Inch-I	Pound	S	S.I.	Inch-Pound		S.I.		Inch-Pound		S.I.	
		gpm	DP ft.	lps	DP kpa	gpm	DP ft.	lps	DP kpa	gpm	DP ft.	lps	DP kpa
40	AC500DQ-62H	34	1.2	2.1	3.4	72	4.8	4.5	14.4	120	12.7	7.6	37.9
50	AC500DQ-82H	45	1.2	2.8	3.5	100	5.4	6.3	16.1	167	14.3	10.5	42.8
60	AC500DQ-102H	55	1.2	3.5	3.5	121	5.3	7.6	15.8	202	14.0	12.7	42.0
80	AC500DQ-122H	83	1.9	5.2	5.7	162	6.8	10.2	20.3	270	18.0	17.0	53.7
100	AC500DQ-142H	98	2.7	6.2	8.0	189	9.3	11.9	27.8	315	24.6	19.9	73.4
110	AC500DQ-162H	113	2.8	7.1	8.2	218	9.6	13.8	28.7	363	25.3	22.9	75.6
120	AC500DQ-182H	128	3.0	8.1	9.1	246	10.5	15.5	31.4	410	27.7	25.9	82.9
150	EV34191111/9	147	2.4	9.3	7.3	283	8.5	17.9	25.4	472	22.5	29.8	67.2
170	EV34191212/7	169	3.5	10.7	10.5	326	12.2	20.6	36.5	543	32.2	34.3	96.2
190	EV34191212/7	192	4.5	12.1	13.4	369	15.5	23.3	46.3	615	40.9	38.8	122.3

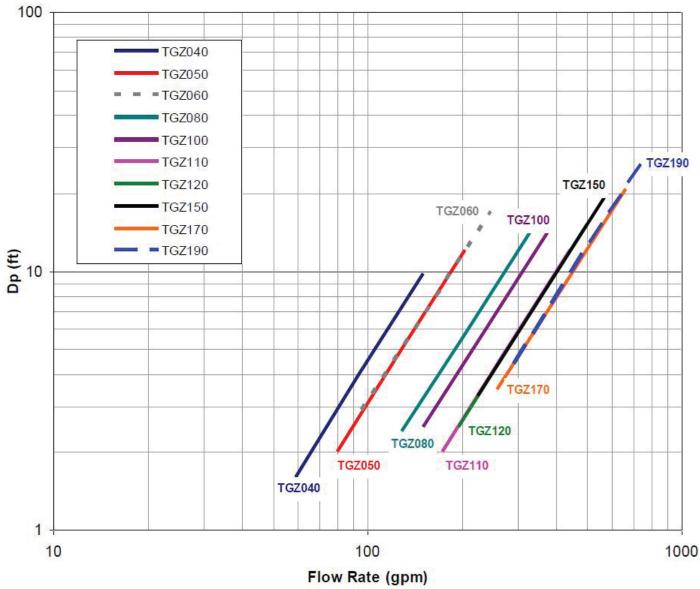
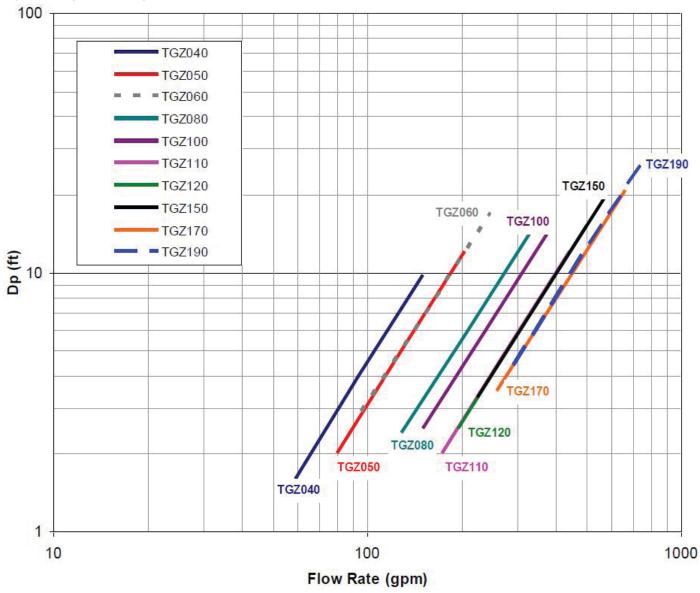



Figure 15: Standard Four-pass Condenser Pressure Drop

Table 10: Standard Four-pass Condenser Pressure Drop

			Minimum	Flow Rate	е		Nominal F	low Rate		Maximum Flow Rate				
UNIT MODEL	COND. MODEL	Inch-	Pound	S	.I.	Inch-	Pound	S.	.I.	Inch-P	ound	S	5. I .	
WODEL	WODEL	GPM	DP ft	lps	DP kpa	GPM	DP ft	lps	DP kpa	GPM	DP ft	lps	DP kpa	
TGZ040	C1010-62	23	1.93	1.45	5.77	47	7.5	3.0	22.4	63	13.1	4.0	39.1	
TGZ050	C1010-62	32	2.44	2.02	7.29	64	9.1	4.0	27.2	86	16.0	5.4	47.7	
TGZ060	C1010-76	38	3.40	2.40	10.16	77	13.0	4.9	38.9	103	22.6	6.5	67.5	
TGZ080	C1410-112	51	2.84	3.22	8.49	103	10.8	6.5	32.3	138	18.8	8.7	56.3	
TGZ100	C1410-128	60	3.00	3.79	8.97	120	11.2	7.6	33.5	160	19.3	10.1	57.8	
TGZ110	C1610-164	69	2.44	4.35	7.29	138	9.1	8.7	27.2	184	15.7	11.6	47.0	
TGZ120	C1610-164	78	3.08	4.92	9.21	156	11.5	9.8	34.4	208	19.9	13.1	59.4	
TGZ150	C1612-164	90	4.85	5.68	14.50	180	18.1	11.4	54.1	240	31.3	15.1	93.4	
TGZ170	C1612-184	103	4.89	6.50	14.60	207	18.4	13.1	55.0	276	31.8	17.4	95.0	
TGZ190	C1612-184	117	6.24	7.38	18.66	234	23.3	14.8	69.6	312	40.2	19.7	120.3	

Figure 16: Optional Two-pass Condenser

Table 11: Optional Two-pass Condenser

TOZUNUT	0010	N	/linimum l	Flow Rat	e	1	Nominal F	low Rate	e	Maximum Flow Rate				
TGZ UNIT MODEL	COND. MODEL	Inch-F	Inch-Pound		.l.	Inch-l	Pound	S	.l.	Inch-	Pound	S.I.		
MODEL	MODEL	GPM	DP ft	lps	DP kpa	GPM	DP ft	lps	DP kpa	GPM	DP ft	lps	DP kpa	
TGZ040	C1010-62	59	1.6	3.7	4.9	94	4.0	5.9	12.0	150	9.8	9.5	29.3	
TGZ050	C1010-62	80	2.0	5.0	6.0	128	4.9	8.1	14.6	205	12.0	12.9	35.8	
TGZ060	C1010-76	96	2.9	6.1	8.5	154	7.0	9.7	20.9	246	17.0	15.5	51.0	
TGZ080	C1410-112	129	2.4	8.1	7.1	206	5.8	13.0	17.3	330	14.2	20.8	42.3	
TGZ100	C1410-128	150	2.5	9.5	7.3	240	6.0	15.1	17.9	384	14.7	24.2	43.8	
TGZ110	C1610-164	173	2.0	10.9	6.0	276	4.9	17.4	14.6	442	12.0	27.9	35.8	
TGZ120	C1610-164	195	2.5	12.3	7.6	312	6.2	19.7	18.5	499	15.1	31.5	45.3	
TGZ150	C1612-164	225	3.3	14.2	9.9	360	8.1	22.7	24.2	576	19.8	36.3	59.1	
TGZ170	C1612-184	259	3.5	16.3	10.4	414	8.5	26.1	25.4	662	20.8	41.8	62.1	
TGZ190	C1612-184	293	4.4	18.5	13.2	468	10.8	29.5	32.3	749	26.4	47.2	78.8	

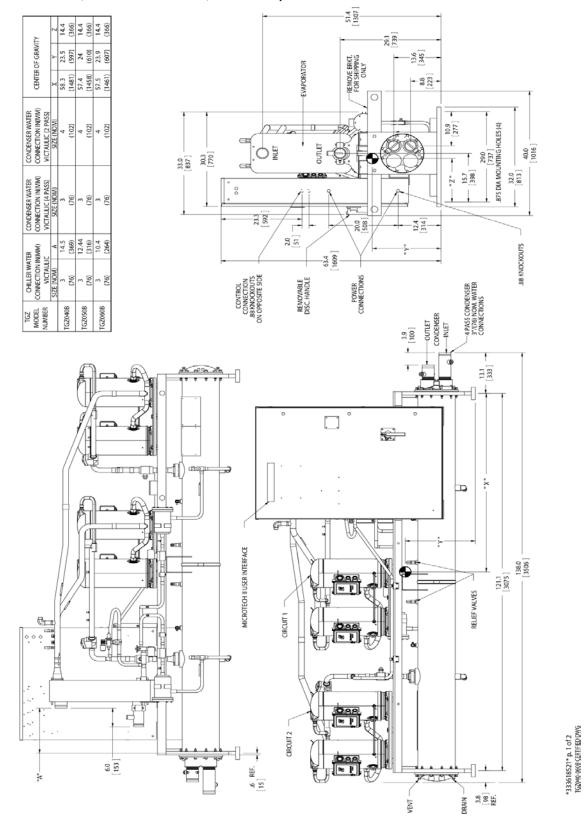
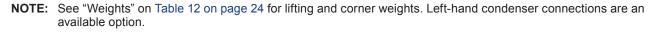
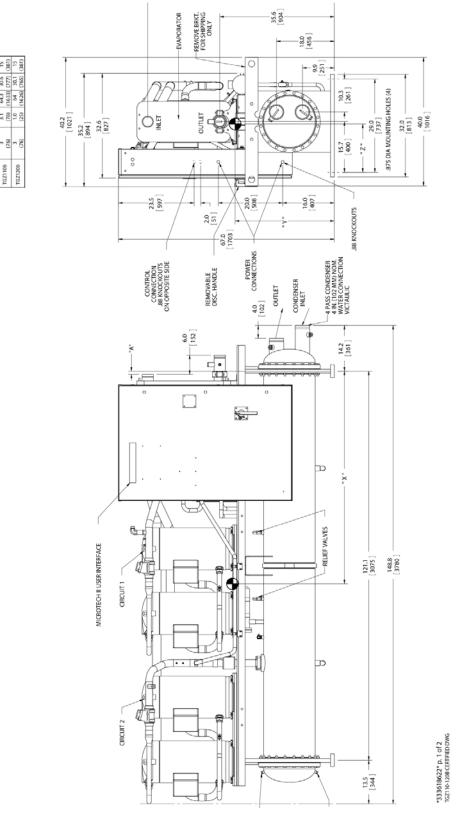
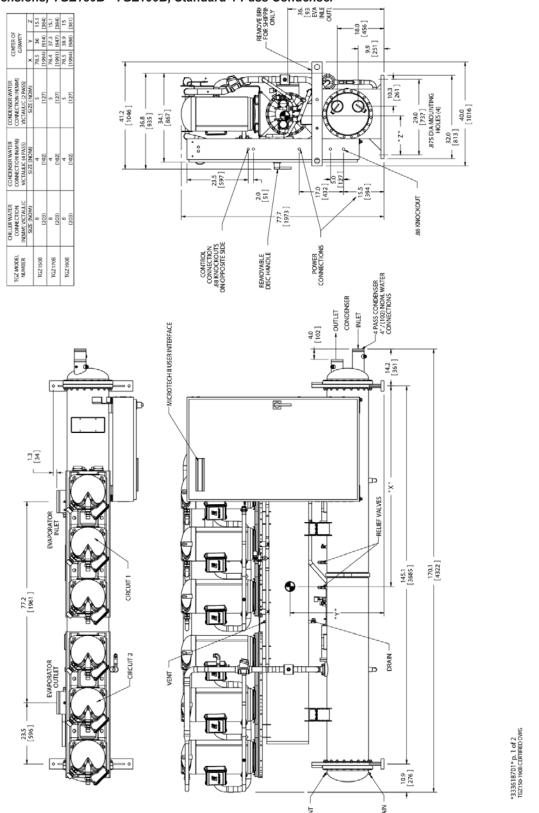



Figure 17: Dimensions, TGZ040B – TGZ060B, Standard 4-pass Condenser

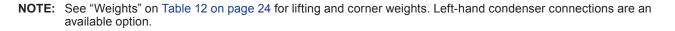
56.4 1434 15.1 (384) 15.4 (391) REMOVE BRKT. FOR SHIPPING ONLY EVAPORATOR 34.1 GRAVITY GRAVITY 31.3 (765) 16.0 10.6 SER WATER 10.0 HOLES (4) 402 [1021] 35.2 [894] 32.6 [827] ٥ 29.0 875 DIA MOUNTING H 32.0 813 40.0 1016] ONDENSER WATES 16.0 405 00 ALLED WATES Ч 23.5 20.0 369 2:0 **BB KNOCKOUTS** 65.5 20 28 PASS CONDENSER POWER REMOVABLE DISC. HANDLE NOTICIANO. CONTROL 8 KNOCKOL TGZ MODEL NUMBER TGZ0808 TGZ1008 JULET 100 367 free and 0000000 æ ÷. hill the second Э Ы MICROTECH II USER INTERFACE 121.1 3075] CIRCUIT 1 RELIEF VALVES TI ٦Î D 10 CIRCUIT 2 *333618621* p. 1 of 2 TG2080-1008 GERTIFIED DWG maaaaaa ¥ 152 VENT DRAIN


Figure 18: Dimensions, TGZ080B – TGZ100B, Standard 4-Pass Condenser

NOTE: See "Weights" on Table 12 on page 24 for lifting and corner weights. Left-hand condenser connections are an available option.


Figure 19: Dimensions, TGZ110B – TGZ120B, Standard 4-Pass Condenser

CENTER OF GRAVITY (IN


TGZ MODEL UMBER

NOTE: See "Weights" on Table 12 on page 24 for lifting and corner weights. Left-hand condenser connections are an available option.

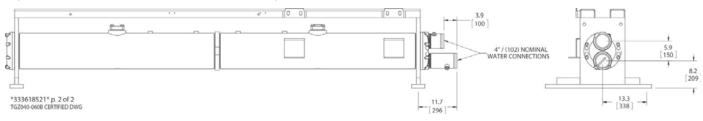
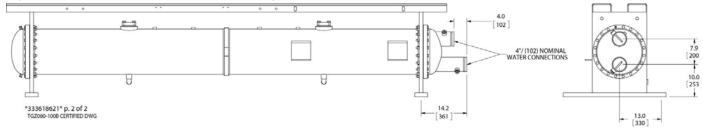
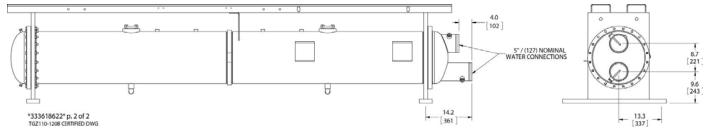


Figure 20: Dimensions, TGZ150B – TGZ190B, Standard 4-Pass Condenser



NOTE: For optional left-hand connections, reverse the images below.


Figure 21: Dimensions, TGZ040B – TGZ060B, Optional 2-Pass condenser

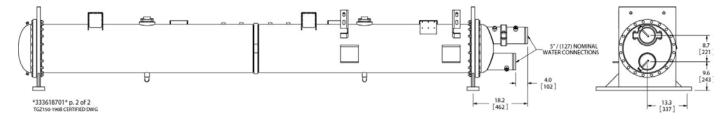

Figure 22: Dimensions, TGZ080B – TGZ100B, Optional 2-Pass Condenser

Figure 23: Dimensions, TGZ110B – TGZ120B, Optional 2-Pass Condenser

Figure 24: Dimensions, TGZ150B – TGZ190B, Optional 2-Pass Condenser

NOTE: Tube sheet-to-tube sheet dimensions are the same for a 4-pass condenser.

Weights

NOTE: Refer to Figure 25 for lifting and mounting point's physical location.

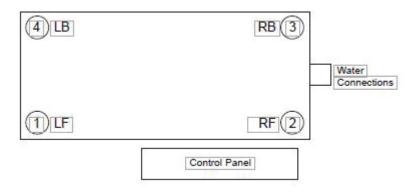

MODEL	LIFT		HT FOR E	ACH	MOUN	TING LOA POINT		SHIPPING WEIGHT	OPERATING WEIGHT	
	L1	L2	L3	L4	M1	M2	M3	M4	(LBS)	(LBS)
TGZ040B	592	638	625	580	633	682	668	620	2434	2604
TGZ050B	590	653	641	580	633	701	688	622	2464	2644
TGZ060B	597	660	650	588	646	714	703	636	2496	2699
TGZ080B	1034	947	1021	1115	1111	1017	1097	1198	4116	4422
TGZ100B	1126	952	1072	1268	1211	1023	1152	1363	4418	4749
TGZ110B	1271	1123	1207	1366	1375	1215	1305	1478	4967	5373
TGZ120B	1257	1122	1195	1339	1361	1214	1294	1450	4913	5319
TGZ150B	1823	1546	1675	1975	2046	1735	1880	2216	7019	7877
TGZ170B	1846	1570	1694	1991	2077	1767	1906	2241	7101	7991
TGZ190B	1848	1566	1682	1986	2081	1763	1894	2235	7082	7972

Table 12: TGZ Lifting, Mounting, and Total Weights, Inch-Lbs Units

Table 13: TGZ Lifting, Mounting, and Total Weights, SI Units

MODEL	LIFT	ING WEIG	HT FOR E T (KG)	EACH	MOUN	TING LO		SHIPPING WEIGHT	OPERATING WEIGHT	
	L1	L2	L3	L4	M1	M2	M3	M4	(KG)	(KG)
TGZ040B	269	289	283	263	287	309	303	281	1104	1181
TGZ050B	268	296	291	263	287	318	312	282	<mark>1118</mark>	1199
TGZ060B	271	299	295	267	293	324	319	288	1132	1224
TGZ080B	469	430	463	506	504	461	498	543	1867	2006
TGZ100B	511	432	486	575	549	464	523	618	2004	2154
TGZ110B	577	509	547	620	624	551	592	670	2253	2437
TGZ120B	570	509	542	607	617	551	587	658	2229	2413
TGZ150B	827	701	760	896	928	787	853	1005	3184	3573
TGZ170B	837	712	768	903	942	802	865	1017	3221	3625
TGZ190B	838	710	763	901	944	800	859	1014	3212	3616

Figure 25: Lifting and Mounting Points Location

Table 14: TGZ 040B – 060B

TGZ Unit Model	TGZ	040B	TGZ	050B	TGZ	060B
No. Of Circuits		2		2		2
COMPRESSORS (4)						
Nominal Horsepower	10	10	13	13	15	15
Number per Circuit	2	2	2	2	2	2
Unloading Steps, %	25 / 50	/ 75 100	25 / 50 / 75 100		25 / 50	/ 75 100
Oil Charge, per compr. Oz (I)	110	(3.3)	110	(3.3)	110	(3.3)
CONDENSER						
Number		1		1		1
No. Refrigerant Circuits	2	2		2		2
Diameter, in. (mm)	10.75	(273)	10.75	(273)	10.75	(273)
Tube Length, in (mm)	122 (3099)	122	(3099)	122	(3099)
Design W.P.,psig (kPa):				· · · · ·		
Refrigerant Side	500 (3447)	500 ((3447)	500 (3447)
Water Side		1599)		(1599)		1599)
Relief Valve Setting, psig (kPa)	500 (3447)	500 ((3447)	500 (3447)
No. Of Water Passes - Standard	4	4		4		4
No. Of Water Passes - Optional	2	2		2		2
Water Volume, gallons (I)	13.6	(51.5)	13.6	(51.5)	16.3	(61.8)
Pump-Down Refrig Capacity lb. (kg) (3)	121.7(55.2)	121.7(55.2)	121.7(55.2)	121.7(55.2)	107.3(48.7)	107.3(48.7)
Connections:		·		^ 		
Water In & Out, in., (mm) (4 Pass)	3 (76)	3	(76)	3	(76)
Water In & Out, in., (mm) (2 Pass)	4 (1	02)	4 (*	102)	4 (*	102)
Relief Valve, Flare in., (mm)	5/8 (15.9)	5/8	(15.9)	5/8	(15.9)
Purge Valve, Flare in., (mm)	5/8 (15.9)	5/8	(15.9)	5/8	(15.9)
Vent & Drain, in (mm) FPT	1/2 (12.7)	1/2	(12.7)	1/2	(12.7)
Liquid Subcooling	Inte	gral	Inte	egral	Inte	egral
EVAPORATOR						
Number	· ·	1		1		1
No. Refrigerant Circuits	2	2		2		2
Water Volume, gallons (1)	3.7 (14.0)	5.0	(18.9)	5.0	(18.9)
Refrigerant Side D.W.P., psig, (kPa)	450 (3102)	450	(3102)	450	(3102)
Relief Valve Setting, psig (kPa)	450 (3102)	450 ((3102)	450 (3102)
Water Side D.W.P., psig, (kPa)	450 (3102)	450 ((3102)	450 (3102)
Water Connections:						
In & Out, in. (mm) victaulic	3 (76)	3	(76)	3	(76)
Drain & Vent	Field S	upplied	Field S	Supplied	Field S	Supplied
UNIT DIMENSIONS						
Length, in. (mm)	138 (3506)	138 (3506)	138 (3506)
Width, in. (mm)		838)	33	(838)	33	(838)
Height, in. (mm)	1	(1605)		(1605)	1	(1605)
UNIT WEIGHTS			-		-	
Operating WT., Ib., (kg)	2604	(1181)	2644	(1199)	2699	(1224)
Shipping WT., Ib. (kg)		(1104)		(1117)	1	(1132)
R-134a Ref. Charge, lb. (kg)	45 (20.4)	45 (20.4)	45 (20.4)	45 (20.4)	50 (22.7)	50 (22.7)

TGZ Unit Model	TGZ	080B	TGZ	100B
No. Of Circuits		2	<u> </u>	2
COMPRESSORS (2)	•			
Nominal Horsepower	20	20	25	25
Number per Circuit	2	2	2	2
Unloading Steps, %	25 / 50	/ 75 100	25 / 50	/ 75 100
Oil Charge, per compr. Oz (I)	158	(4.7)	200	(5.9)
CONDENSER				
Number		1	<u> </u>	1
No. Refrigerant Circuits		2		2
Diameter, in. (mm)	14	(356)	14	(356)
Tube Length, in (mm)	122	(3099)	122	(3099)
Design W.P.,psig (kPa):				
Refrigerant Side	500 (3447)	500 (3447)
Water Side	232 (1599)	232 (1599)
Relief Valve Setting, psig (kPa)	500 (3447)	500 (3447)
No. Of Water Passes - Standard		4		4
No. Of Water Passes - Optional		2		2
Water Volume, gallons (1)	27.5	(104)	27.5	(104)
Pump-Down Refrig Capacity lb. (kg) (3)	186	(84.2)	186	(84.2)
Connections:				
Water In & Out, in., (mm) (4 Pass)	4 (102)	4 (102)
Water In & Out, in., (mm) (2 Pass)	4 (102)	4 (102)
Relief Valve, Flare in., (mm)	5/8	(15.9)	5/8	(15.9)
Purge Valve, Flare in., (mm)	5/8	(15.9)	5/8	(15.9)
Vent & Drain, in (mm) FPT	1/2	(12.7)	1/2	(12.7)
Liquid Subcooling	Inte	rgral	Inte	rgral
EVAPORATOR				
Number		1		1
No. Refrigerant Circuits		2		2
Water Volume, gallons (1)	8.7	(32.9)	8.7 (32.9)
Refrigerant Side D.W.P., psig, (kPa)	450	(3102)	450	(3102)
Relief Valve Setting, psig (kPa)	450	(3102)	450	(3102)
Water Side D.W.P., psig, (kPa)	450 (3102)	450 (3102)
Water Connections:				
In & Out, in. (mm) victaulic	3	(76)	3	(76)
Drain & Vent	Field S	Supplied	Field S	upplied
UNIT DIMENSIONS				
Length, in. (mm)	149	(3785)	151	(3836)
Width, in. (mm)	32.5	(826)	32.5	(826)
Height, in. (mm)	65.5	(1664)	65.5	(1664)
UNIT WEIGHTS				
Operating WT., Ib., (kg)	4422	(2005)	4749	(2154)
Shipping WT., Ib. (kg)	4116	(1867)	4418	(2004)
R-134a Ref. Charge, lb. (kg)	85 (38.6)	85 (38.6)	90 (40.8)	90 (40.8)

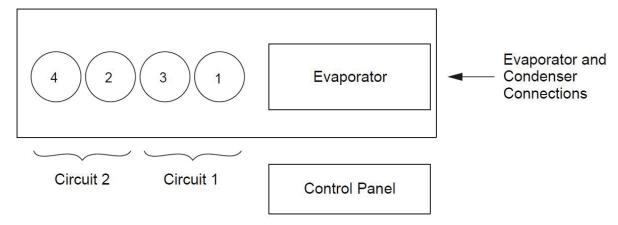

TGZ Unit Model	TGZ	110B	TGZ120B			
No. Of Circuits		2		2		
COMPRESSORS (2)			-			
Nominal Horsepower	25	30	30	30		
Number per Circuit	2	2	2	2		
Staging, 4 Stages, Circuit #1 in Lead	23/50/	73/100	25 / 50	/ 75 100		
Staging, 4 Stages, Circuit #2 in Lead	27/50/	77/100	25 / 50	/ 75 100		
Oil Charge, per compr. Oz (I)	200 (5.9)	213 (6.3)	213	(6.3)		
CONDENSER						
Number		1		1		
No. Refrigerant Circuits		2		2		
Diameter, in. (mm)	16.0 (406.4)	16.0	(406.4)		
Tube Length, in (mm)	120 (3048)	120	(3048)		
Design W.P.,psig (kPa):						
Refrigerant Side	500 (3447)	500	(3447)		
Water Side	232 (1599)	232	(1599)		
Relief Valve Setting, psig (kPa)	500 (3447)	500	(3447)		
No. Of Water Passes - Standard	4	1		4		
No. Of Water Passes - Optional		2		2		
Water Volume, gallons (I)	35.4	(134)	35.4	(134)		
Pump-Down Refrig Capacity lb. (kg) (3)	252	(114)	252	(114)		
Connections:						
Water In & Out, in., (mm) (4 Pass)	4 (*	102)	4 (102)		
Water In & Out, in., (mm) (2 Pass)	5 (*	127)	5 (127)		
Relief Valve, Flare in., (mm)	5/8 (15.9)	5/8	(15.9)		
Purge Valve, Flare in., (mm)	5/8 (15.9)	5/8	(15.9)		
Vent & Drain, in (mm) FPT	1/2 (12.7)	1/2	(12.7)		
Liquid Subcooling	Inte	gral	Inte	egral		
EVAPORATOR						
Number		1		1		
No. Refrigerant Circuits		2		2		
Water Volume, gallons (1)	9.7 (36.7)	9.7	(36.7)		
Refrigerant Side D.W.P., psig, (kPa)	450 (3102)	450	(3102)		
Relief Valve Setting, psig (kPa)	450 (3102)	450	(3102)		
Water Side D.W.P., psig, (kPa)	450 (3102)	450	(3102)		
Water Connections:						
In & Out, in. (mm) victaulic	3 (76)	3	(76)		
Drain & Vent	Field S	upplied	Field S	Supplied		
UNIT DIMENSIONS	-		-			
Length, in. (mm)	149 (3784)	149	(3784)		
Width, in. (mm)	34.5	(876)	34.5	(876)		
Height, in. (mm)	67 (*	1702)	67 (1702)		
UNIT WEIGHTS						
Operating WT., lb., (kg)	5373	(2437)	5319	(2412)		
Shipping WT., lb. (kg)	4967	(2253)	4913	(2228)		
R-134a Ref. Charge, lb. (kg)	110 (49.9)	110 (49.9)	110 (49.9)	110 (49.9)		

Table 17: TGZ 150B – 190B

TGZ Unit Model	TGZ	Z150B	TG	Z170B	TGZ	190B
No. Of Circuits		2		2		2
COMPRESSORS (2)						
Nominal Horsepower	25	25	25	30	30	30
Number per Circuit	3	3	3	3	3	3
Staging, 6 Stages, Circuit #1 in Lead	17 / 33 / 50	/ 67 / 83 /100	15 / 33 / 48	/ 67 / 81 / 100	17 / 33 / 50 /	, 67 / 83 /100
Staging, 6 Stages, Circuit #2 in Lead	17 / 33 / 50	/ 67 / 83 /100	19 / 34 / 52	/ 67 / 85 / 100	17 / 33 / 50 /	/ 67 / 83 /100
Oil Charge, per compr. Oz (I)	200	(5.9)	200 (5.9)	213 (6.3)	213	(6.3)
CONDENSER				1	1	
Number		1		1		1
No. Refrigerant Circuits		2		2		2
Diameter, in. (mm)	16 ((406.4)	16	(406.4)	16 (4	406.4)
Tube Length, in (mm)	144	(3658)	144	(3658)	144 ((3658)
Design W.P.,psig (kPa):						
Refrigerant Side	500	(3447)	500	(3447)	500 (3447)
Water Side	232	(1599)	232	(1599)	232 (1599)
Relief Valve Setting, psig (kPa)	500	(3447)	500	(3447)	500 (3447)
No. Of Water Passes - Standard		4		4	4	4
No. Of Water Passes - Optional		2		2	:	2
Water Volume, gallons (I)	42.5	(160.9)	47.1	(178.4)	47.1 (178.4)
Pump-Down Refrig Capacity lb. (kg) (3)	302	(137)	277	7 (126)	277	(126)
Connections:						
Water In & Out, in., (mm) (4 Pass)	4	(102)	4 (102)		4 (*	102)
Water In & Out, in., (mm) (2 Pass)	5	(127)	5	(127)	5 (*	127)
Relief Valve, Flare in., (mm)	5/8	(15.9)	5/8	(15.9)	5/8 ((15.9)
Purge Valve, Flare in., (mm)	5/8	(15.9)	5/8	(15.9)	5/8 ((15.9)
Vent & Drain, in (mm) FPT	1/2	(12.7)	1/2	(12.7)	1/2 ((12.7)
Liquid Subcooling	Int	egral	Int	tegral	Inte	gral
EVAPORATOR						
Number		1		1		1
No. Refrigerant Circuits		2		2		2
Water Volume, gallons (1)	57.6	(218)	56.9	(215.4)	56.9 ((215.4)
Refrigerant Side D.W.P., psig, (kPa)	450	(3102)	450	(3102)	450 ((3102)
Water Side D.W.P., psig, (kPa)	150	(1034)	150	(1034)	150 (1034)
Relief Valve Setting, psig (kPa)	450	(3102)	450	(3102)	450 ((3102)
Water Connections:						
In & Out, in. (mm) victaulic	8	(203)	8	(203)	8 (2	203)
Drain & Vent	1/2	(12.7)	1/2	(12.7)	1/2 ((12.7)
UNIT DIMENSIONS			8		8	
Length, in. (mm)	170	(4318)	170	(4318)	170 ((4318)
Width, in. (mm)	34	(864)	34	(864)	34 ((864)
Height, in. (mm)	78	(1981)	78	(1981)	78 (*	1981)
UNIT WEIGHTS						
Operating WT., lb., (kg)	7877	(3572)	7991	(3624)	7972	(3616)
Shipping WT., lb. (kg)	7019	(3183)	7101	(3220)	7082	(3212)
R-134a Ref. Charge, lb. (kg)	140 (63.5)	140 (63.5)	150 (68)	150 (68)	150 (68)	150 (68)

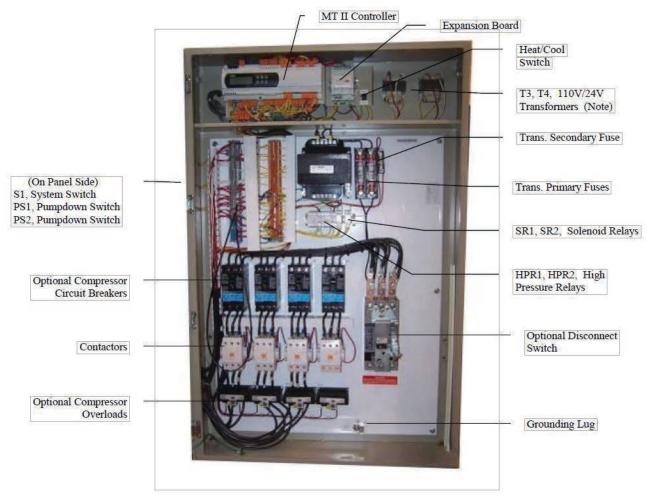

Unit Components

Figure 26: Compressor Locations

NOTE: Models TGZ150 to TGZ190 add a #5 compressor to circuit #1 and a #6 compressor to circuit #2 and substitute an underslung shelland-tube evaporator for the brazed-plate evaporator.

Figure 27: Electric Panel Components

NOTE: Models TGZ 150 – 190 have additional T5 for electronic expansion valves.

Electrical Notes

Field Wiring

The TGZ units are supplied as standard with compressor contactors and power terminal block, designed for multi-point power supply to the unit, no compressor circuit breakers. Available options are:

1. Single-point connection to power block with compressor circuit breakers

2. Single-point connection to disconnect switch with compressor circuit breakers

3. High short circuit current rating with single-point disconnect switch (excluding 575V units)

4. Multi-point connection to disconnect switch, no compressor circuit breakers

5. The supplemental overloads option is used to reduce the required electrical service size and wire sizing for units under 140°F leaving condenser water temperature.

A factory-installed control circuit transformer is standard. Optionally, a field-installed control power source can be wired to the unit.

Wiring and conduit selections must comply with the National Electrical Code and/or local requirements.

An open fuse indicates a short, ground, or overload. Before replacing a fuse or restarting a compressor, the root cause must be identified and corrected. Tables in the Electrical Data section (starting with Table 20 on page 32) give specific information on recommended wire sizes.

Unit power inlet wiring must enter the control box through the right side. A 7/8-inch pilot knockout is provided. Refer to the unit dimension drawings beginning with Figure 17 on page 19 for the location of power (and control) connections.

▲ CAUTION

To avoid equipment damage, use only copper conductors in main terminal block.

Notes for "Electrical Data Single Point" Power

1. If a separate 115V power supply is used for the control circuit, then the wire sizing is 10 amps for all unit sizes.

2. Recommended power lead wire sizes for 3 conductors per conduit are based on 100% conductor ampacity in accordance with NEC. Voltage drop has not been included. Therefore, it is recommended that power leads be kept short. All terminal block connections must be made with copper wire.

3. The recommended power lead wire sizes are based on an ambient temperature of 86°F (30°C). Ampacity correction factors must be applied for other ambient temperatures. Refer to the NEC Handbook.

4. Must be electrically grounded according to national and local electrical codes.

Voltage Limitations

1. Within +/- 10% of nameplate rating

2. Voltage unbalance not to exceed 2% with a resultant current unbalance of 6 to 10 times the voltage unbalance per NEMA MG-1 Standard. This is an important restriction that must be adhered to.

Notes for "Field Wiring Data"

1. Requires a single disconnect to supply electrical power to the unit. This power supply must either be fused or use a circuit breaker.

2. All field wiring to unit power block or optional non-fused disconnect switch must be copper.

3. All field wire size values given in table apply to 75°C rated wire per NEC.

Panel Ratings

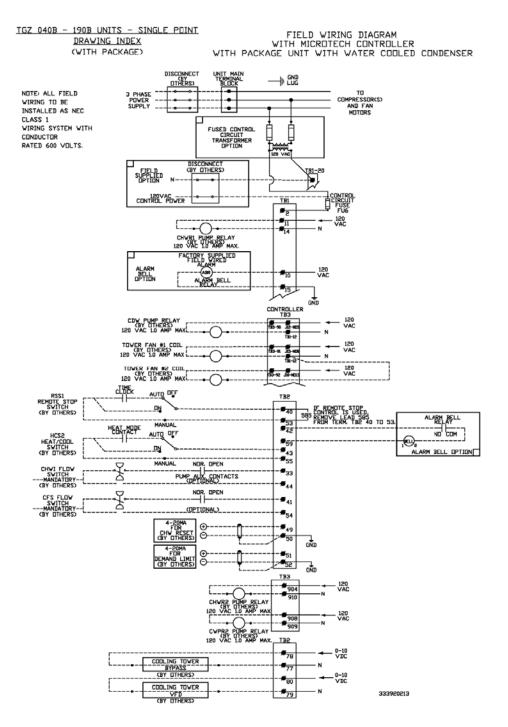
Units without Supplemental Overloads

Table 18: Standard Panel Short Circuit Current Ratings

		Т	TGZ-B Model Size									
Voltage	Hz	40	050-100	110-190								
208-230	60	5	5	10								
380	60	5	5	5								
400	50	5	5	5								
460	60	5	5	5								
575	60	5 5 5										

Table 19: Optional Panel Ratings (kA)

Voltage	Hz	Options, Single-Point Power Connection Only
208-230	60	100
380	60	65
400	50	65
460	60	65
575	60	Not Available


NOTE: High Short Circuit Current Rating (HSCCR) provides all panel components rated per above table and is so labeled.

Circuit Breakers

The circuit breaker used in the High Short Circuit panel option may have a higher trip rating than the unit Maximum Overload Protection (MOP) value shown on the unit nameplate. The circuit breaker is installed as a service disconnect switch and does not function as branch circuit protection, mainly that the protection device must be installed at the point of origin of the power wiring. The breaker (disconnect switch) is oversized to avoid nuisance trips at high ambient temperature conditions.

Field Wiring Diagram

Figure 28: Field Wiring Diagram

Table 20: RLA-LRA

Model	Voltage		С	ompres	sors RI	A with	Overloa	ad	Co	mpress	ors RLA	A withou	ut Overl	oad	Compressors LRA					
Size	Size	Hz	#1	#3	#5	#2	#4	#6	#1	#3	#5	#2	#4	#6	#1	#3	#5	#2	#4	#6
ĺ	208	60	30.8	30.8		30.8	30.8		35.3	35.3		35.3	35.3		239	239		239	239	
Ì	230	60	28.0	28.0		28.0	28.0		35.3	35.3		35.3	35.3		239	239		239	239	
040B	380	60	16.8	16.8		16.8	16.8		21.2	21.2		21.2	21.2		145	145		145	145	
Ì	460/400	60/50	14.0	14.0		14.0	14.0		17.9	17.9		17.9	17.9		125 / 118	125 / 118		125 / 118	125 / 118	i
Ì	575	60	11.2	11.2		11.2	11.2		11.5	11.5		11.5	11.5		80	80		80	80	
i	208	60	42.0	42.0		42.0	42.0		48.1	48.1		48.1	48.1		300	300		300	300	
	230	60	38.4	38.4		38.4	38.4		48.1	48.1		48.1	48.1		300	300		300	300	
050B	380	60	23.2	23.2		23.2	23.2		25.6	25.6		25.6	25.6		139	139		139	139	
	460/400	60/50	19.2	19.2		19.2	19.2		21.8	21.8		21.8	21.8		150 / 140	150 / 140		150 / 140	150 / 140)
ľ	575	60	15.2	15.2		15.2	15.2		18.6	18.6		18.6	18.6		109	109		109	109	
	208	60	52.0	52.0		52.0	52.0		52.6	52.6		52.6	52.6		340	340		340	340	
	230	60	48.8	48.8		48.8	48.8		52.6	52.6		52.6	52.6		340	340		340	340	
060B	380	60	29.6	29.6		29.6	29.6		32.1	32.1		32.1	32.1		196	196		196	196	
	460/400	60/50	24.4	24.4		24.4	24.4		25.6	25.6		25.6	25.6		173	173		173	173	
	575	60	19.6	19.6		19.6	19.6		21.2	21.2		21.2	21.2		132	132		132	132	
	208	60	58.0	58.0		58.0	58.0		73.1	73.1		73.1	73.1		505	505		505	505	
	230	60	52.8	52.8		52.8	52.8		73.1	73.1		73.1	73.1		505	505		505	505	
080B	380	60	31.6	31.6		31.6	31.6		37.8	37.8		37.8	37.8		280	280		280	280	
0002	460/400	60/50	26.4	26.4		26.4	26.4		30.1	30.1		30.1	30.1		225	225		225	225	
	575	60	21.2	21.2		21.2	21.2		24.4	24.4		24.4	24.4		180	180		180	180	
	208	60	69.2	69.2		69.2	69.2		73.1	73.1		73.1	73.1		500	500		500	500	
ł	230	60	62.4	62.4		62.4	62.4		73.1	73.1		73.1	73.1		500	500		500	500	
100B	380	60	37.6	37.6		37.6	37.6		44.9	44.9		44.9	44.9		305	305		305	305	
1000	460/400	60/50	31.2	31.2		31.2	31.2		35.3	35.3		35.3	35.3		250	250		250	250	
	575	60	25.2	25.2		25.2	25.2		28.2	28.2		28.2	28.2		198	198		198	198	
	208	60	69.2	69.2		88.8	88.8		73.1	73.1		93.6	93.6		500	500		599	599	
	230	60	62.4	62.4		80.0	80.0		73.1	73.1		93.6	93.6		500	500		599	599	
110B	380	60	37.6	37.6		48.0	48.0		44.9	44.9		53.2	53.2		305	305		358	358	
1100	460/400	60/50	31.2	31.2		40.0	40.0		35.3	35.3		45.5	45.5		250	250		310	310	
	575	60	25.2	25.2		32.0	32.0		28.2	28.2		36.5	36.5		198	198		239	239	
	208	60	88.8	88.8		88.8	88.8		93.6	93.6		93.6	93.6		599	599		599	599	
	230	60	80.0	80.0		80.0	80.0		93.6	93.6		93.6	93.6		599	599		599	599	
120B	380	60	48.0	48.0		48.0	48.0		53.2	53.2		53.2	53.2		358	358		358	358	
1200	460/400	60/50	40.0	40.0		40.0	40.0		45.5	45.5		45.5	45.5		310	310		310	310	
ł	575	60	32.0	32.0		32.0	32.0		36.5	36.5		36.5	36.5		239	239		239	239	
	208	60	69.2	69.2	69.2	69.2	69.2	69.2	73.1	73.1	73.1	73.1	73.1	73.1	500	500	500	500	500	500
	230	60	62.4	62.4	62.4	62.4	62.4	62.4	73.1	73.1	73.1	73.1	73.1	73.1	500	500	500	500	500	500
150B	380	60	37.6		37.6	37.6	37.6	37.6	44.9	44.9	44.9	44.9	44.9	44.9	305	305	305	305	305	305
1000	460/400	60/50	31.2	31.2	31.2	31.2	31.2	31.2	35.3	35.3	35.3	35.3	35.3	35.3	250	250	250	250	250	250
	575	60	25.2	25.2	25.2	25.2	25.2	25.2	28.2	28.2	28.2	28.2	28.2	28.2	198	198	198	198	198	198
	208	60	69.2	69.2	69.2	88.8	88.8	88.8	73.1	73.1		93.6	93.6	93.6	500	500	500	599	599	599
ł	200	60	62.4	62.4	62.4	80.0	80.0	80.0	73.1	73.1	73.1 73.1	93.6 93.6	93.6	93.6	500	500	500	599	599	599
170B	380	60	37.6	37.6	37.6	48.0	48.0	48.0	44.9	44.9	44.9	93.0 53.2	53.2	53.2	305	305	305	358	358	358
1100	460/400	60/50	31.2	31.2	31.2	40.0	40.0	40.0	35.3	35.3	35.3	45.5	45.5	45.5	250	250	250	310	310	310
ŀ		60/50	25.2	25.2	25.2	32.0	32.0	32.0	28.2	28.2	28.2	-	45.5 36.5		198	198	198	239	239	239
	575 208	60	25.2 88.8	25.2 88.8	25.2 88.8		32.0 88.8		28.2 93.6	28.2 93.6	28.2 93.6	36.5 93.6		36.5	599		599	1	239 599	239 599
ŀ		60 60				88.8		88.8					93.6	93.6		599 500	599 599	599 599	599	-
1000	230		80.0	80.0	80.0	80.0	80.0	80.0	93.6	93.6	93.6	93.6	93.6	93.6	599 358	599 358				599 358
190B	380	60	48.0	48.0	48.0	48.0	48.0	48.0	53.2	53.2	53.2	53.2	53.2	53.2	358	358	358	358	358	358
	460/400	60/50	40.0	40.0	40.0	40.0	40.0	40.0	45.5	45.5	45.5	45.5	45.5	45.5	310	310	310	310	310	310
	575	60	32.0	32.0	32.0	32.0	32.0	32.0	36.5	36.5	36.5	36.5	36.5	36.5	239	239	239	239	239	23

NOTE: 1. External overloads only available on Templifier units with 140°F maximum condenser leaving water temperature. 2. Unit wire sizing amps are equal to 125% of the largest compressor-motor RLA plus 100% of RLA of all other loads in the circuit including control transformer.

Single point power supply requires a single fused disconnect to supply electrical power to the unit.
 Compressor RLA values are for wire sizing purposes only and do not reflect normal operating current draw.

Table 21: Single Point with External Overloads

Model	Voltage		MCA	Fie	ld Wire	Max.	Power	Block [2]	Disconne	ct Switch [2]
Size	Size	Hz		Qty	Wire GA	FS	Size	Lug Range	Size	Lug Range
	208	60	131	3	1/0 AWG	150	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	230	60	119	3	1 AWG	125	175A	(1) 2/0 - #14	250A	(1) 350 - #
040B	380	60	72	3	4 AWG	80	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #1
0.02	460/400	60/50	60	3	6 AWG	70	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #1
	575	60	48	3	8 AWG	50	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #1
	208	60	179	3	3/0 AWG	200	380A	(1) 500 - #4	250A	(1) 350 - #
	230	60	164	3	2/0 AWG	200	175A	(1) 2/0 - #14	250A	(1) 350 - #
050B	380	60	99	3	3 AWG	110	175A	(1) 2/0 - #14	125A [1]	(1) 3/0 - #
0002	460/400	60/50	82	3	4 AWG	100	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #1
	575	60	65	3	6 AWG	80	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #1
	208	60	221	3	4/0 AWG	250	380A	(1) 500 - #4	250A	(1) 350 - #
	230	60	208	3	4/0 AWG	250	380A	(1) 500 - #4	250A	(1) 350 - #
060B	380	60	126	3	1 AWG	150	175A	(1) 2/0 - #14	250A	(1) 350 - #
0000	460/400	60/50	104	3	2 AWG	125	175A	(1) 2/0 - #14	125A [1]	(1) 3/0 - #3
	575	60	84	3	4 AWG	120	175A	(1) 2/0 - #14	120A [1]	(1) 1/0 - #1
	208	60	247	3	250 MCM	300	380A	(1) 500 - #4	400A	(2) 500 - 3/
	230	60	247	3	4/0 AWG	250	380A 380A	(1) 500 - #4	250A	(1) 350 - #
080B	380	60	135	3	1/0 AWG	150	175A	(1) 2/0 - #14	250A	(1) 350 - #
0000	460/400	60/50	113	3	2 AWG	125	175A	(1) 2/0 - #14	125A [1]	(1) 3/0 - #
	575	60	91	3	3 AWG	120	175A	(1) 2/0 - #14	120A [1]	(1) 1/0 - #1
	208	60	295	3	350 MCM	350	380A	(1) 500 - #4	400A	(2) 500 - 3/
100B	230	60	266	3	300 MCM	300	380A	(1) 500 - #4	400A	(2) 500 - 3/
	380	60	160	3	2/0 AWG	175	175A	(1) 2/0 - #14	250A	(1) 350 - #
	460/400	60/50	133	3	1/0 AWG	175	175A	(1) 2/0 - #14	250A	(1) 350 - #
	575	60	108	3	2 AWG	125	175A	(1) 2/0 - #14	125A [1]	(1) 3/0 - #3
	208	60	339	6	4/0 AWG	400	380A	(1) 500 - #4	400A	(2) 500 - 3/
	230	60	305	3	350 MCM	350	380A	(1) 500 - #4	400A	(2) 500 - 3/
110B	380	60	184	3	3/0 AWG	225	380A	(1) 500 - #4	250A	(1) 350 - #
HUD	460/400	60/50	153	3	2/0 AWG	175	175A	(1) 2/0 - #14	250A	(1) 350 - #
	575	60	123	3	1 AWG	170	175A	(1) 2/0 - #14	250A	(1) 350 - #
	208	60	378	6	250 MCM	450	380A	(1) 500 - #4	600A	(2) 500 - 3/
	230	60	340	6	4/0 AWG	400	380A	(1) 500 - #4	400A	(2) 500 - 3/
120B	380	60	204	3	4/0 AWG	250	380A	(1) 500 - #4	250A	(1) 350 - #
1200	460/400	60/50	170	3	2/0 AWG	200	380A	(1) 500 - #4	250A	(1) 350 - #
	575	60	136	3	1/0 AWG	150	175A	(1) 2/0 - #14	250A	(1) 350 - #
	208	60	433	6	4/0 AWG	500	760A	(1) 2/0 - #14	600A	(2) 500 - 3/
	208	60	433 390	6	250 MCM	450	760A 760A	(2) 500 - #4	600A	(2) 500 - 3/
150B	380	60	235	3	250 MCM	250	380A	(2) 500 - #4	400A	(2) 500 - 3/
1000	460/400	60/50	195	3	3/0 AWG	230	380A	(1) 500 - #4	250A	(1) 350 - #
	575	60	158	3	2/0 AWG	175	175A	(1) 2/0 - #14	250A 250A	. ,
	208	60	497	6	250 MCM	500	760A		600A	(1) 350 - #
		8					1	(2) 500 - #4		(2) 500 - 3/
1700	230	60	448	6	4/0 AWG	500	760A	(2) 500 - #4	600A	(2) 500 - 3
170B	380	60 60/50	269	3	300 MCM	300	380A	(1) 500 - #4	400A	(2) 500 - 3
	460/400	60/50	224	3	4/0 AWG	250	380A	(1) 500 - #4	400A	(2) 500 - 3
	575	60	180	3	3/0 AWG	200	380A	(1) 500 - #4	250A	(1) 350 - #
	208	60	555	6	300 MCM	600	760A	(2) 500 - #4	800A	(3) 500 - 3
100-	230	60	500	6	250 MCM	500	760A	(2) 500 - #4	600A	(2) 500 - 3
190B	380	60	300	3	350 MCM	300	380A	(1) 500 - #4	400A	(2) 500 - 3
	460/400	60/50	250	3	250 MCM	300	380A	(1) 500 - #4	400A	(2) 500 - 3/
	575	60	200	3	4/0 AWG	225	380A	(1) 500 - #4	250A	(1) 350 - #

NOTE: 1. Unit wire sizing amps are equal to 125% of the largest compressor-motor RLA plus 100% of the other compressor RLA's.

2. Multiple point power supply requires a separate fused disconnect for each circuit to supply electrical power to the unit.

3. External compressor overload option is only available for units with 140°F maximum leaving condenser water temperature.

4. Wire sizes shown above are for standard ambient temperature and short runs of wire.

Table 22: Single Point without External Overloads

Model	Voltage		MCA	Field	d Wire	Max.	Power	Block [2]	Disconneo	t Switch [2]
Size	Size	Hz		Qty	Wire GA	FS	Size	Lug Range	Size	Lug Range
	208	60	150	3	1/0 AWG	175	380A	(1) 500 - #4	250A	(1) 350 - #6
	230	60	150	3	1/0 AWG	175	380A	(1) 500 - #4	250A	(1) 350 - #6
040B	380	60	91	3	3 AWG	110	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #10
	460/400	60/50	77	3	4 AWG	90	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #10
	575	60	49	3	8 AWG	60	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #10
	208	60	205	3	4/0 AWG	250	380A	(1) 500 - #4	250A	(1) 350 - #6
	230	60	205	3	4/0 AWG	250	380A	(1) 500 - #4	250A	(1) 350 - #6
050B	380	60	109	3	2 AWG	125	175A	(1) 2/0 - #14	125A [1]	(1) 3/0 - #3
	460/400	60/50	93	3	3 AWG	110	175A	(1) 2/0 - #14	125A [1]	(1) 3/0 - #3
	575	60	80	3	4 AWG	90	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #10
	208	60	224	3	4/0 AWG	250	380A	(1) 500 - #4	250A	(1) 350 - #6
	230	60	224	3	4/0 AWG	250	380A	(1) 500 - #4	250A	(1) 350 - #6
060B	380	60	137	3	1/0 AWG	150	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	460/400	60/50	109	3	2 AWG	125	175A	(1) 2/0 - #14	125A [1]	(1) 3/0 - #3
	575	60	91	3	3 AWG	110	175A	(1) 2/0 - #14	100A [1]	(1) 1/0 - #10
	208	60	311	3	400 MCM	350	380A	(1) 500 - #4	400A	(2) 500 - 3/0
	230	60	311	3	400 MCM	350	380A	(1) 500 - #4	400A	(2) 500 - 3/0
080B	380	60	161	3	2/0 AWG	175	175A	(1) 2/0 - #14	250A	(1) 350 - #6
0000	460/400	60/50	128	3	1 AWG	150	175A	(1) 2/0 #14	250A	(1) 350 - #6
	575	60	128	3	2 AWG	125	175A	(1) 2/0 - #14	125A [1]	(1) 3/0 - #3
	208	60	311	3	400 MCM	350	380A	(1) 500 - #4	400A	(2) 500 - 3/0
	230	60	311	3	400 MCM	350	380A	(1) 500 - #4	400A	(2) 500 - 3/0
100B	380	60	191	3	3/0 AWG	225	380A 380A	(1) 500 - #4	250A	(1) 350 - #6
TOOD	460/400	60/50	150	3	1/0 AWG	175	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	575	60	120	3	1 AWG	175	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	208	60	357	6	4/0 AWG	450	380A	(1) 2/0 - #14	400A	(1) 330 - #0
	230	60	357	6	4/0 AWG	450	380A 380A	(1) 500 - #4	400A 400A	(2) 500 - 3/0
110B	380	60	210	3	4/0 AWG	250	380A 380A	(1) 500 - #4	250A	(1) 350 - #6
TIUD	460/400	60/50	173	3	2/0 AWG	200	380A 380A	(1) 500 - #4	250A	(1) 350 - #6
		60	173	3	1	-	1			
	575		398		1/0 AWG	175	175A 760A	(1) 2/0 - #14	250A 600A	(1) 350 - #6
	208	60 60	398	6 6	250 MCM	450 450		(2) 500 - #4	600A	(2) 500 - 3/0
1200	230				250 MCM		760A	(2) 500 - #4		(2) 500 - 3/0
120B	380	60	227	3	4/0 AWG	250	380A	(1) 500 - #4	250A	(1) 350 - #6
	460/400	60/50	194	3	3/0 AWG	225	380A	(1) 500 - #4	250A	(1) 350 - #6
	575	60	156	3	2/0 AWG	175	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	208	60	457	6	4/0 AWG	500	760A	(2) 500 - #4	600A	(2) 500 - 3/0
1505	230	60	457	6	4/0 AWG	500	760A	(2) 500 - #4	600A	(2) 500 - 3/0
150B	380	60	281	3	300 MCM	300	380A	(1) 500 - #4	400A	(2) 500 - 3/0
	460/400	60/50	221	3	4/0 AWG	250	380A	(1) 500 - #4	250A	(1) 350 - #6
	575	60	177	3	3/0 AWG	200	380A	(1) 500 - #4	250A	(1) 350 - #6
	208	60	524	6	300 MCM	600	760A	(2) 500 - #4	600A	(2) 500 - 3/0
	230	60	524	6	300 MCM	600	760A	(2) 500 - #4	600A	(2) 500 - 3/0
170B	380	60	308	3	350 MCM	350	380A	(1) 500 - #4	400A	(2) 500 - 3/0
	460/400	60/50	254	3	250 MCM	300	380A	(1) 500 - #4	400A	(2) 500 - 3/0
	575	60	204	3	4/0 AWG	225	380A	(1) 500 - #4	250A	(1) 350 - #6
	208	60	585	6	350 MCM	600	760A	(2) 500 - #4	800A	(3) 500 - 3/0
	230	60	585	6	350 MCM	600	760A	(2) 500 - #4	800A	(3) 500 - 3/0
190B	380	60	333	3	400 MCM	350	380A	(1) 500 - #4	400A	(2) 500 - 3/0
	460/400	60/50	285	3	300 MCM	300	380A	(1) 500 - #4	400A	(2) 500 - 3/0
	575	60	229	3	4/0 AWG	250	380A	(1) 500 - #4	400A	(2) 500 - 3/0

NOTE: 1. Unit wire sizing amps are equal to 125% of the largest compressor-motor RLA plus 100% of the other compressor RLA's.

Single point power supply requires a single fused disconnect to supply electrical power to the unit.
 External compressor overload option is only available for units with 140°F maximum leaving condenser water temperature.

4. Wire Sizes shown above are for standard ambient temperature and short runs of wire.

Table 23: Multi-Point with External Overloads

Model	Voltage		Cir #1	F	ield Wire	Max.	Cir #2	F	ield Wire	Max.
Size	Size	Hz	MCA	Qty	Wire GA	FS	MCA	Qty	Wire GA	FS
	208	60	69	3	4 AWG	100	69	3	4 AWG	100
	230	60	63	3	6 AWG	90	63	3	6 AWG	90
040B	380	60	38	3	8 AWG	50	38	3	8 AWG	50
	460/400	60/50	32	3	10 AWG	45	32	3	10 AWG	45
	575	60	25	3	10 AWG	35	25	3	10 AWG	35
	208	60	95	3	3 AWG	125	95	3	3 AWG	125
	230	60	86	3	3 AWG	125	86	3	3 AWG	125
050B	380	60	52	3	6 AWG	70	52	3	6 AWG	70
	460/400	60/50	43	3	8 AWG	60	43	3	8 AWG	60
	575	60	34	3	10 AWG	45	34	3	10 AWG	50
	208	60	117	3	1 AWG	150	117	3	1 AWG	150
	230	60	110	3	2 AWG	150	110	3	2 AWG	150
060B	380	60	67	3	4 AWG	90	67	3	4 AWG	90
	460/400	60/50	55	3	6 AWG	80	55	3	6 AWG	80
	575	60	44	3	8 AWG	60	44	3	8 AWG	60
	208	60	131	3	1/0 AWG	175	131	3	1/0 AWG	175
	230	60	119	3	1 AWG	150	119	3	1 AWG	150
080B	380	60	71	3	4 AWG	100	71	3	4 AWG	100
	460/400	60/50	59	3	6 AWG	80	59	3	6 AWG	80
	575	60	48	3	8 AWG	60	48	3	8 AWG	60
	208	60	156	3	2/0 AWG	225	156	3	2/0 AWG	225
	230	60	140	3	1/0 AWG	200	140	3	1/0 AWG	200
100B	380	60	85	3	4 AWG	110	85	3	4 AWG	110
	460/400	60/50	70	3	4 AWG	100	70	3	4 AWG	100
	575	60	57	3	6 AWG	80	57	3	6 AWG	80
	208	60	156	3	2/0 AWG	225	200	3	3/0 AWG	250
	230	60	140	3	1/0 AWG	200	180	3	3/0 AWG	250
110B	380	60	85	3	4 AWG	110	108	3	2 AWG	150
	460/400	60/50	70	3	4 AWG	100	90	3	3 AWG	125
	575	60	57	3	6 AWG	80	72	3	4 AWG	100
	208	60	200	3	3/0 AWG	250	200	3	3/0 AWG	250
	230	60	180	3	3/0 AWG	250	180	3	3/0 AWG	250
120B	380	60	108	3	2 AWG	150	108	3	2 AWG	150
	460/400	60/50	90	3	3 AWG	125	90	3	3 AWG	125
	575	60	72	3	4 AWG	100	72	3	4 AWG	100
	208	60	225	3	4/0 AWG	250	225	3	4/0 AWG	250
	230	60	203	3	4/0 AWG	250	203	3	4/0 AWG	250
150B	380	60	122	3	1 AWG	150	122	3	1 AWG	150
	460/400	60/50	101	3	2 AWG	125	101	3	2 AWG	125
	575	60	82	3	4 AWG	100	82	3	4 AWG	100
	208	60	225	3	4/0 AWG	250	289	3	350 MCM	350
	230	60	203	3	4/0 AWG	250	260	3	300 MCM	300
170B	380	60	122	3	1 AWG	150	156	3	2/0 AWG	200
170B	460/400	60/50	101	3	2 AWG	125	130	3	1 AWG	150
	575	60	82	3	4 AWG	100	104	3	2 AWG	125
	208	60	289	3	350 MCM	350	289	3	350 MCM	350
	230	60	260	3	300 MCM	300	260	3	300 MCM	300
190B	380	60	156	3	2/0 AWG	200	156	3	2/0 AWG	200
	460/400	60/50	130	3	1 AWG	150	130	3	1 AWG	150
	575	60	104	3	2 AWG	125	104	3	2 AWG	125

NOTE: "Maximum Fuse Sizes" are selected at approximately 225% of the largest compressor RLA plus 100% of other compressor RLA values.

Table 24: Multi-Point with External Overloads

Model	Voltage		Cir #1 Pov	ver Block [2]	Cir #1 Dis	connect Sw [2]	Cir #2 F	ower Block [2]	Cir #2 Disc	connect Sw [2]
Size	Size	Hz	Size	Lug Range	Size	Lug Range	Size	Lug Range	Size	Lug Range
	208	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	230	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
040B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	575	60	N/A		N/A		N/A		N/A	
	208	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	230	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
050B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	208	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
	230	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
060B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
OOOD	460/400	60/50	175A	(1) 2/0 - #14	100/1 100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	575	60	175A	(1) 2/0 #14	100/X	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	208	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	230	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
080B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	120/X	(1) 1/0 - #10
0000	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	575	60	175A	(1) 2/0 - #14	100/X	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	208	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	230	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
100B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
1000	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	208	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	380A	(1) 500 - #4	250A	(1) 350 - #6
	200	60	175A	(1) 2/0 - #14	250A 250A	(1) 350 - #6	380A	(1) 500 - #4	250A 250A	(1) 350 - #6
110B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
TIUD	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	120A	(1) 1/0 - #10
	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	208	60	380A	(1) 500 - #4	250A	(1) 350 - #6	380A	(1) 500 - #4	250A	(1) 350 - #6
	200	60	380A 380A	(1) 500 - #4	250A 250A	(1) 350 - #6	380A	(1) 500 - #4	250A 250A	(1) 350 - #6
120B	380	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
1200	460/400	60/50	175A	(1) 2/0 - #14	125A 100A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A 100A	(1) 1/0 - #10
	575		175A	. /	100A	, , ,	175A		100A 100A	
	208	60 60	380A	(1) 2/0 - #14	250A	(1) 1/0 - #10 (1) 350 - #6	380A	(1) 2/0 - #14 (1) 500 - #4	250A	(1) 1/0 - #10 (1) 350 - #6
	200	60	380A 380A	(1) 500 - #4	250A 250A		380A		250A	(1) 350 - #6
150B	380	60	175A	(1) 2/0 - #14	250A 250A	(1) 350 - #6 (1) 350 - #6	175A	(1) 500 - #4 (1) 2/0 - #14	250A 250A	(1) 350 - #6
1306	460/400	60/50	175A	(1) 2/0 - #14	125A	1	175A		125A	
	575	1 1	175A	. ,	125A 100A	(1) 3/0 - #3		(1) 2/0 - #14	125A 100A	(1) 3/0 - #3
		60		(1) 2/0 - #14 (1) 500 - #4		(1) 1/0 - #10	175A	(1) 2/0 - #14		(1) 1/0 - #10
	208	60 60	380A	. /	250A	(1) 350 - #6	380A	(1) 500 - #4	400A	(2) 500 - 3/0
1700	230	60 60	380A	(1) 500 - #4	250A	(1) 350 - #6	380A	(1) 500 - #4	400A	(2) 500 - 3/0
170B	380	60 60/50	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	460/400	60/50	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
	208	60	380A	(1) 500 - #4	400A	(2) 500 - 3/0	380A	(1) 500 - #4	400A	(2) 500 - 3/0
1005	230	60	380A	(1) 500 - #4	400A	(2) 500 - 3/0	380A	(1) 500 - #4	400A	(2) 500 - 3/0
190B	380	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	460/400	60/50	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	575	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3

NOTE: 1. On HSCCR Unit = 250A {(1) 350 - #6}

2. Power Block and Disconnect Switch sizes are the minimum. Larger sizes may be used, however the lug range must be the same. 3. "Size" is the maximum amperage rating for the terminals or the main electrical device. "Connection" is the range of wire sizes that the terminals on the electrical device will accept.

Table 25: Multi-Point without External Overloads

Model	Voltage		Cir #1	F	ield Wire	Max.	Cir #2	F	Field Wire	Max.
Size	Size	Hz	MCA	Qty	Wire GA	FS	MCA	Qty	Wire GA	FS
	208	60	79	3	4 AWG	110	79	3	4 AWG	110
	230	60	79	3	4 AWG	110	79	3	4 AWG	110
040B	380	60	48	3	8 AWG	60	48	3	8 AWG	60
	460/400	60/50	40	3	8 AWG	50	40	3	8 AWG	50
	575	60	26	3	10 AWG	35	26	3	10 AWG	35
	208	60	108	3	2 AWG	150	108	3	2 AWG	150
	230	60	108	3	2 AWG	150	108	3	2 AWG	150
050B	380	60	58	3	6 AWG	80	58	3	6 AWG	80
	460/400	60/50	49	3	8 AWG	70	49	3	8 AWG	70
	575	60	42	3	8 AWG	60	42	3	8 AWG	60
	208	60	118	3	1 AWG	150	118	3	1 AWG	150
	230	60	118	3	1 AWG	150	118	3	1 AWG	150
060B	380	60	72	3	4 AWG	100	72	3	4 AWG	100
	460/400	60/50	58	3	6 AWG	80	58	3	6 AWG	80
Ì	575	60	48	3	8 AWG	60	48	3	8 AWG	60
	208	60	164	3	2/0 AWG	225	164	3	2/0 AWG	225
	230	60	164	3	2/0 AWG	225	164	3	2/0 AWG	225
080B	380	60	85	3	4 AWG	110	85	3	4 AWG	110
ľ	460/400	60/50	68	3	4 AWG	90	68	3	4 AWG	90
	575	60	55	3	6 AWG	70	55	3	6 AWG	80
	208	60	164	3	2/0 AWG	225	164	3	2/0 AWG	225
100B	230	60	164	3	2/0 AWG	225	164	3	2/0 AWG	225
	380	60	101	3	2 AWG	125	101	3	2 AWG	125
	460/400	60/50	79	3	4 AWG	110	79	3	4 AWG	110
	575	60	63	3	6 AWG	90	63	3	6 AWG	125 110 90 300
	208	60	164	3	2/0 AWG	225	211	3	4/0 AWG	300
	230	60	164	3	2/0 AWG	225	211	3	4/0 AWG	300
110B	380	60	101	3	2 AWG	125	120	3	1 AWG	150
	460/400	60/50	79	3	4 AWG	110	102	3	2 AWG	125
	575	60	63	3	6 AWG	90	82	3	4 AWG	110
	208	60	211	3	4/0 AWG	300	211	3	4/0 AWG	300
	230	60	211	3	4/0 AWG	300	211	3	4/0 AWG	300
120B	380	60	120	3	1 AWG	150	120	3	1 AWG	150
	460/400	60/50	102	3	2 AWG	125	102	3	2 AWG	125
	575	60	82	3	4 AWG	110	82	3	4 AWG	110
	208	60	238	3	250 MCM	300	238	3	250 MCM	300
	230	60	238	3	250 MCM	300	238	3	250 MCM	300
150B	380	60	146	3	1/0 AWG	175	146	3	1/0 AWG	175
	460/400	60/50	115	3	2 AWG	150	115	3	2 AWG	150
	575	60	92	3	3 AWG	110	92	3	3 AWG	110
	208	60	238	3	250 MCM	300	304	3	350 MCM	350
	230	60	238	3	250 MCM	300	304	3	350 MCM	350
170B	380	60	146	3	1/0 AWG	175	173	3	2/0 AWG	225
170B	460/400	60/50	115	3	2 AWG	150	148	3	1/0 AWG	175
	575	60	92	3	3 AWG	110	119	3	1 AWG	150
	208	60	304	3	350 MCM	350	304	3	350 MCM	350
	230	60	304	3	350 MCM	350	304	3	350 MCM	350
190B	380	60	173	3	2/0 AWG	225	173	3	2/0 AWG	225
	460/400	60/50	148	3	1/0 AWG	175	148	3	1/0 AWG	175
	575	60	119	3	1 AWG	150	119	3	1 AWG	150

NOTE: 1. On HSCCR Unit = 250A {(1) 350 - #6}

2. Power Block and Disconnect Switch sizes are the minimum. Larger sizes may be used, however the lug range must be the same. 3. "Size" is the maximum amperage rating for the terminals or the main electrical device. "Connection" is the range of wire sizes that the terminals on the electrical device will accept.

Table 26: Multi-Point without External Overloads

Model	Voltage		Cir #1	Power Block [2]	Cir #1 Dis	sconnect Sw [2]	Cir #2 P	ower Block [2]	Cir #2 Dis	connect Sw [2]
Size	Size	Hz	Size	Lug Range	Size	Lug Range	Size	Lug Range	Size	Lug Range
	208	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
ľ	230	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
040B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/ t	(1) 1/0 - #10
0.02	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/ t	(1) 1/0 - #10
ľ	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/ t	(1) 1/0 - #10
	208	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
	230	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
050B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
0002	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/1 100A	(1) 1/0 - #10
ł	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/ t	(1) 1/0 - #10
	208	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
ŀ	230	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
060B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
0002	460/400	60/50	176/(175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/1 100A	(1) 1/0 - #10
ł	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/1 100A	(1) 1/0 - #10
	208	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
ł	230	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
080B	380	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/1 100A	(1) 1/0 - #10
	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/ C	(1) 1/0 - #10
i	208	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
ł	230	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
100B	380	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
1000	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	120/X	(1) 1/0 - #10
ŀ	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100/X	(1) 1/0 - #10
	208	60	380A	(1) 500 - #4	250A	(1) 350 - #6	380A	(1) 500 - #4	250A	(1) 350 - #6
ł	230	60	380A	(1) 500 - #4	250A	(1) 350 - #6	380A	(1) 500 - #4	250A	(1) 350 - #6
110B	380	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
1102	460/400	60/50	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
ł	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	208	60	380A	(1) 500 - #4	250A	(1) 350 - #6	380A	(1) 500 - #4	250A	(1) 350 - #6
ŀ	230	60	380A	(1) 500 - #4	250A	(1) 350 - #6	380A	(1) 500 - #4	250A	(1) 350 - #6
120B	380	60	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
1200	460/400	60/50	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
ł	575	60	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10	175A	(1) 2/0 - #14	100A	(1) 1/0 - #10
	208	60	380A	(1) 500 - #4	400A	(2) 500 - 3/0	380A	(1) 500 - #4	400A	(2) 500 - 3/0
	230	60	380A	(1) 500 - #4	400A	(2) 500 - 3/0	380A	(1) 500 - #4	400A	(2) 500 - 3/0
150B	380	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	175A	(1) 2/0 - #14	250A	(1) 350 - #6
	460/400	60/50	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3
ŀ	575	60	175A	(1) 2/0 - #14	120A	(1) 1/0 - #10	175A	(1) 2/0 - #14	120A	(1) 1/0 - #10
	208	60	380A	(1) 500 - #4	400A	(2) 500 - 3/0	380A	(1) 2/0 - #14	400A	(2) 500 - 3/0
ł	208	60	380A	(1) 500 - #4	400A 400A	(2) 500 - 3/0	380A 380A	(1) 500 - #4	400A 400A	(2) 500 - 3/0
170B	380	60	175A	(1) 2/0 - #14	250A	(1) 350 - #6	380A	(1) 500 - #4	250A	(1) 350 - #6
	460/400	60/50	175A	(1) 2/0 - #14	125A	(1) 3/0 - #3	175A	(1) 2/0 - #14	250A 250A	(1) 350 - #6
	575	60	175A 175A	(1) 2/0 - #14	125A 100A	(1) 1/0 - #10	175A 175A	(1) 2/0 - #14	250A 250A	(1) 350 - #6
	208	60	380A	(1) 500 - #4	400A	(2) 500 - 3/0	380A	(1) 2/0 - #14	400A	(2) 500 - 3/0
ł	208	60	380A	(1) 500 - #4	400A 400A	(2) 500 - 3/0	380A 380A	(1) 500 - #4	400A 400A	(2) 500 - 3/0
190B	380	60	380A	(1) 500 - #4	250A	(1) 350 - #6	380A 380A	(1) 500 - #4	250A	(1) 350 - #6
1900	460/400	60/50	175A		250A 250A		175A		250A 250A	(1) 350 - #6
ļ	460/400 575	60/50	175A 175A	(1) 2/0 - #14 (1) 2/0 - #14	250A 250A	(1) 350 - #6 (1) 350 - #6	TISA	(1) 2/0 - #14	250A 250A	(1) 350 - #6

NOTE: 1. On HSCCR Unit = 250A {(1) 350 - #6}

2. Power Block and Disconnect Switch sizes are the minimum. Larger sizes may be used, however the lug range must be the same. 3. "Size" is the maximum amperage rating for the terminals or the main electrical device. "Connection" is the range of wire sizes that the terminals on the electrical device will accept.

Start-Up and Shutdown

NOTE: Daikin Applied service personnel or factory authorized service agency must perform initial startup in order to activate warranty. Return the "Scroll Compressor Equipment Warranty Form" within 10 working days to Daikin Applied as instructed on the form to obtain full warranty benefits.

Pre Start-Up

1. Perform visual inspection of all components.

2. With main disconnect open, check all electrical connections in control panel and starter to be sure they are tight and provide good electrical contact. Use only copper wire to connection points.

3. Check and inspect all water piping. Make sure flow direction is correct and piping is made to correct connection on evaporator and condenser.

4. Open all water flow valves to the condenser and evaporator.

5. Flush the cooling tower (if there is one used) and system piping to be sure the system is clean. Start source water pump and manually start hot water pump. Check all piping for leaks. Vent the air from the evaporator and condenser water circuit as well as from the entire water system. The cooler circuit should contain clean, non-corrosive water.

6. Check to see that the water temperature sensor is installed in the correct water line.

7. Making sure control stop switch S1 is open (off) and pumpdown switch(es) PS1 and PS2 are on "manual pumpdown," throw the main power and control disconnect switches to "on." This will energize the crankcase heaters. Wait a minimum of 12 hours before starting up unit.

8. Check compressor oil level. Prior to start-up, the oil level should cover at least one-third of the sightglass.

9. Check pressure drop across evaporator and condenser, and see that water flow is correct per the design flow rates and data starting on page 16

10. Check the actual line voltage to the unit to make sure it is the same as called for on the compressor nameplate within + 10% and that phase voltage unbalance does not exceed 2%. Verify that adequate power supply and capacity is available to handle load.

11. Check that the panel-mounted Heat/Cool switch is in the correct position

12. Make sure all wiring and fuses are of the proper size. Also make sure all interlock wiring is completed per Daikin Applied diagrams. Use only copper wire.

13. Verify that all mechanical and electrical inspections by code authorities have been completed.

14. Make sure all auxiliary load and control equipment is operative and that adequate cooling heat is available for initial start-up.

Start-Up

1. Open the compressor suction and discharge shutoff valves until backseated. Always replace valve seal caps.

2. Open the manual liquid line shutoff valve and leak test the unit.

3. Check to see that the unit circuit breakers are in the "off" position.

4. Check to see that the pumpdown switches PS1 and PS2 are in the "manual pumpdown" position and the control system switch S1 is in the "off" position.

5. Place the main power and control circuit disconnects to the "on" position.

6. Verify crankcase heaters have operated for at least 12 hours prior to start-up. Crankcase should be warm.

7. Adjust the setpoint on the MicroTech II controller to the desired hot water temperature.

8. Start the auxiliary equipment for the installation by turning on the time clock, ambient thermostat and/or remote on/off switch and chilled water pump.

9. Check resets of all equipment protection controls.

10. Switch the unit circuit breakers to "On".

11. Place pumpdown switches PS1 and PS2 to "auto" for restart and normal operation.

12. Start the system by pushing the system switch S1 to "On".

13. After running the unit for a short time, check the oil level in each compressor crankcase and check for flashing in the refrigerant sightglass.

14. After system performance has stabilized, complete the "Compressorized Equipment Warranty Form" (Form No. 206036A) to obtain full warranty benefits. This form is shipped with the unit. After completion return to your sales representative from Daikin Applied.

15. Verify all control settings appropriate to the application.

Start-up after Extended Shutdown

1. Inspect all equipment to see that it is in satisfactory operating condition.

2. Open the compressor suction and discharge valves until backseated. Always replace valve seal caps.

3. Open the manual liquid line shutoff valves.

4. Check circuit breakers. They must be in the "off" position.

5. Check to see that the pumpdown switch(es) PS1 and PS2 are in the "manual shutdown" position and the control system switch S1 is in the "off" position.

6. Throw the main power and control circuit disconnects to the "on" position.

7. Allow the crankcase heaters to operate for at least 12 hours prior to start-up.

8. Start the source water flow and purge the water piping as well as the evaporator in the unit.

9. Start the auxiliary equipment for the installation by turning on the time clock, ambient thermostat and/or remote on/off switch.

10. Adjust the setpoint on the MicroTech II controller to the desired hot water temperature.

- 11. Check resets of all equipment protection controls.
- 12. Switch the unit circuit breakers to "on."
- 13. Start the system by pushing the system switch S1 to "on."

Most relays and terminals in the control center are powered when S1 is closed and the control circuit disconnect is on. Therefore, do not close S1 until ready for start-up or serious equipment damage can occur.

14. Place pumpdown switch(es) PS1 and PS2 to the "auto pumpdown" position for restart and normal operation.

15. After running the unit for a short time, check the oil level in each compressor crankcase and for flashing in the refrigerant sightglass (see Maintenance section).

This unit contains POE lubricants that must be handled carefully and the proper protective equipment (gloves, eye protection, etc.) must be used when handling POE lubricant. POE must not come into contact with any surface or material that might be harmed by POE, including certain polymers (e.g. PVC/CPVC and polycarbonate piping).

Daikin Applied recommends against the use of PVC and CPVC piping for chilled water systems. In the event the pipe is exposed to POE oil used in the refrigerant system, the pipe can be chemically damaged and pipe failure can occur. Also, do not use oil or refrigerant additives in the system.

General

The liquid line sightglass/moisture indicator on all circuits must be checked to be sure the glass is full and clear and the moisture indicator indicates a dry condition. If the indicator shows that a wet condition exists or if bubbles show in the glass, even with a full refrigerant charge, the filter-drier element should be changed if acid test or oil analysis indicated acid conditions.

Water supplies in some areas can tend to foul the TGZ heat exchangers to the point where cleaning is necessary. The fouled vessel will be indicated by an abnormally high condensing pressure or low evaporating pressures and can result in nuisance trip-outs. To clean the vessels, a chemical descaling solution should be used according to the manufacturer's directions.

The condenser sensor should be cleaned anytime the condenser is opened. This should typically be performed at the annual inspection, however more frequent cleaning may be required depending on the conditions of the jobsite. Recommended maintenance includes checking the sensor tip for buildup and cleaning the tip using a soft cloth. Stubborn build up (e.g., lime) can be removed using a common vinegar cleaning agent.

Warranty is voided if wiring is not in accordance with specifications. A blown fuse or tripped protector indicates a short ground or overload. Before replacing fuse or restarting compressor, the trouble must be found and corrected. It is important to have a qualified control panel electrician service this panel. Unqualified tampering with the controls can cause serious damage to equipment and void the warranty.

Prior to attempting any service on the control center, study the wiring diagram furnished with the unit so that you understand the operation of the unit.

The panel is always energized even if the system switch is off. If it is necessary to de-energize the complete panel, including crankcase heaters, pull the main unit disconnect. Failure to do so may result in serious personal injury or death.

If motor or compressor damage is suspected, do not restart until qualified service personnel have checked the unit.

Electrical Terminals

To avoid injury from electric shock hazard, turn off all power before continuing with the following service.

All power electrical terminals should be checked for tightness every six months, as they tend to loosen in service due to normal heating and cooling of the wire.

Figure 29: TGZ Operating Envelope

Evap	Condenser Leaving Water Temperature, F												
LWT Temp;	70	80	90	100	110	120	130	140	150	160			
80	n/a	n/a	n/a	n/a	OK					OK			
70	n/a	n/a	n/a	OK						OK			
60	n/a	n/a	OK							OK			
50	n/a	OK								OK			
45	n/a									OK			
40	OK									ОК			
35	ОК								ОК	n/a			
30	ОК							OK	n/a	n/a			
25	ОК						OK	n/a	n/a	n/a			
20	ОК					OK	n/a	n/a	n/a	n/a			

Table 27: TGZ Temperature Limits

	Min.	Max	
Cooling Cycle	Temp	Temp	Note:
Evaporator Leaving Water Temp.	40° F	60° F	In Cooling Cycle controlling Evap LWT - The Maximum Setpoint temp is 60°F
Condenser Leaving Water Temp	70° F	160° F	With Evap LWT above 50°F, the Cond LWT must be 30°F above Evap. LWT
Evaporator Water Delta-T	6° F	16° F	
With Glycol in Evap - Evap LWT	15° F	60° F	With Evap LWT below 40°F, the Cond EWT must not exceed 120°F above the Evap LWT.
Heating Cycle			
Evaporator Leaving Water Temp	40° F	85° F	With Evap LWT above 70°F, the Cond LWT must be 30°F above Evap LWT
Condenser Leaving Water Temp	110° F	160° F	
Evaporator Water Delta-T	6° F	16° F	
Condenser Water Delta - T			
with 2 Pass Condenser Water Flow	10° F	15° F	Cond Water Temp Delta-T should be 10°F minimum for good condenser liquid subcooling
with 4 Pass Condenser Water Flow	15° F	40° F	

Table 28: TGZ Flow Limits

Unit Nominal Tons	40	50	60	80	100	110	120	150	170	190
Evaporator GPM Range										
10 F Water Temp Delta-T, 65ELWT/130CLWT	72	100	121	162	189	218	246	283	326	369
16-6 Water Temp Delta-T, 65ELWT/130LWT	45 - 120	62 - 167	75 - 202	101 - 270	118 - 315	136 - 363	154 - 410	177 - 472	204 - 543	231 - 615
10 Water Temp Delta-T, Full Unit Range	34 - 120	45 - 167	55 - 202	83 - 270	98 - 315	113 - 363	128 - 410	147 - 472	169 - 543	192 - 615
Condenser GPM Range - 4 Pass Cond										
20 F Water Temp Delta-T, 65ELWT/130CLWT	47	64	77	103	120	138	156	180	207	234
40-15 F Water Temp Delta-T, 65ELWT/130CLWT	23 - 63	32 - 86	38 - 103	51 - 138	60 - 160	69 - 184	78 - 208	90 - 240	103 - 276	117 - 312
Condenser GPM Range - 2 Pass Cond										
10 F Water Temp Delta-T, 65ELWT/130CLWT	94	128	154	206	240	276	312	360	414	468
15 F Water Temp Delta-T, 65ELWT/130CLWT	63	85	103	137	160	184	208	240	276	312

NOTE: ELWT=Evaporator Leaving Water Temperature, CLWT=Condenser Water Leaving Temperature.

Compressor POE Oil

The oil level should be watched carefully upon initial start-up and for sometime thereafter. Compressor oil must be one of the following: Copeland brand Ultra 22 CC, Copeland brand Ultra 32 CC, Copeland brand Ultra 32-3MAF, Mobil EAL Artic 22 CC, or Uniqema RL32-3MAF.

This is synthetic polyolester oil with anti-wear additives and is highly hygroscopic. Care must be taken to minimize exposure of the oil to air when charging oil into the system. Oil can be added to the compressor through the oil fill hole on the compressor. To add oil, pump in the necessary oil.

Sightglass and Moisture Indicator

A clear glass of liquid indicates that there may be an adequate refrigerant charge in the system to provide proper feed through the expansion valve. Bubbling refrigerant in the sightglass indicates that the system is short of refrigerant charge. Refrigerant gas flashing in the sightglass could also indicate an excessive pressure drop in the line, possibly due to a clogged filter-drier or a restriction elsewhere in the system. An element inside the sightglass indicates what moisture condition corresponds to a given element color. If the sightglass does not indicate a dry condition after about 12 hours of operation, the oil should be tested for acid and the filter-driers changed if necessary.

Table 29: Troubleshooting Chart

PROBLEM	POSSIBLE CAUSES	POSSIBLE CORRECTIVE STEPS
Compressor Will Not Run	 Main switch, circuit breakers open. Fuse blown. 	 Close switch Check electrical circuits and motor winding for shorts or grounds. Investigate for possible overloading. Replace fuse or reset breakers after fault is corrected.
	3. Thermal overloads tripped or fuses blown.	 Overloads are auto reset. Check unit closely when unit comes back on lines.
	 Defective contactor or coil. System shut down by equipment protection devices. 	 Repair or replace. Determine type and cause of shutdown and correct it before resetting safety switch.
	6. No heating required.	 None. Wait until unit calls for heating.
	Liquid line solenoid will not open.	7. Repair or replace coil.
	Motor electrical trouble. Loose wiring.	 Check motor for opens, short circuit, or burnout. Check all wire junctions. Tighten all screws.
Compressor Noisy or	 Improper piping support on suction or liquid line. 	1. Relocate, add or remove hangers.
Vibrating	2. Worn compressor.	2. Replace.
	Low lift. Compressor improperty phased and running	 Avoid inverted starts and control discharge pressure.
1.0.12	backwards	4. Correct phasing.
High Discharge Pressure	Condenser water insufficient or temperature too high. Fouled condenser tubes	 Investigate ways to increase hot water supply or lower the temperature of the hot water. Check operation of the supplementary heater. Clean.
	 Noncondensables in system. 	Purge the noncondensables.
	System overcharge with refrigerant.	Remove excess refrigerant.
0.0000000000000000000000000000000000000	Discharge shutoff valve partially closed.	5. Open valve.
Low Discharge Pressure	 Suction shutoff valve partially closed. 	1. Open valve.
Pressure	Insufficient refrigerant in system. Low suction pressure.	 Check for leaks. Repair and add charge. See corrective steps for low Suction pressure below.
	4. Compressor floodback.	4. Check suction superheat.
	5. Condenser too large.	5. Check condenser operation against rating.
High Suction	1. Excessive load.	1. Reduce load or add additional equipment.
Pressure Low Suction Pressure	Expansion valve overfeeding. Lack of refrigerant.	Check remote bulb. Regulate superheat. Check for leaks. Repair and add charge.
Low Socion ressure	2. Evaporator dirty.	 Clean chemically.
	Clogged liquid line filter-drier.	Replace cartridge(s).
	 Clogged suction line or compressor suction gas strainers. 	4. Clean strainers.
	5. Expansion valve malfunctioning.	 Check and reset for proper superheat. Replace if necessary.
	6. Gasket failure in evaporator head ring.	 Check ∆P across evaporator. Check means for regulating condensing
	7. Condensing temperature too low.	temperature.
	8. Insufficient water flow.	8. Adjust flow.
Compressor	1. Erratic water sensor.	1. Replace
Loading/Unloading	Insufficient water flow.	2. Adjust flow.
Intervals Too Short	3. System load swings.	3. Correct load control.
	Unit operation with no load. Low voltage during high load conditions.	 Review BAS controls. Check supply voltage for excessive line drop.
Motor Overload Relays or Circuit	 Defective or grounded wining in motor or power circuits. 	2. Replace compressor motor.
Breakers Open	3. Loose power wiring or burnt compressor contacts.	3. Check all connections and tighten. Replace
	High condensing temperature.	 contactor. See corrective steps for high discharge pressure.
	5. Power line fault causing unbalanced voltage.	 See concerve steps for high discharge pressure. Check Supply voltage. Notify power company. Do
	 High ambient temperature around the overload relay. 	not start until fault is corrected. 6. Provide ventilation to reduce heat.
	1. Operating beyond design conditions.	1. Add facilities so that conditions are within
Compr. Thermal	Supply voltage range or imbalance	allowable limits.
Switch Open	3. High ssh.	2. Correct power.
	1. Thermostat set too low.	 Verify charge & expansion valve operation. Reset to 42°F (6°C) or above.
Freeze Protection	2. Low water flow.	2. Adjust flow.
Opens	Low suction pressure.	3. See "Low Suction Pressure."
	Rapid Load Swings.	Verify Chiller and BAS controls.

Table 30: Maintenance Schedule

	Monthly	Quarterly	Semi-Annually	Annually	As Required By Performance
I. Compressor		a g		()	o 20
A. Performance Evaluation (Log & Analysis) *	0				
B. Motor	-	17 N			a 13
Meg. Windings		N	X		a (d
Ampere Balance (within 10%)		Х			
 Terminal Check (tight connections, porcelain clean) 				Х	
 Motor Cooling (check temperature) 		Х			
C. Lubrication System					
Oil Level	0			X	
 Oil Appearance (clear color, quantity) 	0				23 A.4
 Oil change if indicated by oil analysis 					Х
II. Controls		· · · ·			~
A. Operating Controls					
 Check Settings and Operation 		6. B	X		ri 39
B. Protective Controls	2 ⁷	00 .S		2	e" (C)
Test Operation of:		6. B	· · · · · · · · · · · · · · · · · · ·	s	ri 39
Alarm Relay	3	X			8 - 8
Pump Interlocks		X		5	d 22
High and Low Pressure Cutouts	s.,	Х			6. ()
III. Condenser		a a			
B. Test Water Quality	5	X			a 13
C. Clean Condenser Tubes (or as required)				Х	v
D. Eddycurrent Test - Tube Wall Thickness					X
E. Seasonal Protection	2				Х
IV. Evaporator		V			
B. Test Water Quality		X		6	v
C. Clean Evaporator Tubes or plates (as required) D. Seasonal Protection		3. <u> </u>		(X
V. Expansion Valves					^
A. Performance Evaluation (Superheat Control)	2	Х	-	-	a 28
VI. Compressor - Chiller Unit		~			
A. Performance Evaluation	0	96 B	-		÷
B. Leak Test:	~	8 8	8		8 8
Compressor Fittings and Terminal		Х			- 12
Piping Fittings		X			
Vessel Relief Valves		X			
C. Vibration Isolation Test		X			
D. General Appearance:		5 - 22 8 2 - 5		9 6 X.1944	
Paint		5.A		Х	2 X
Insulation		00 0.		Х	
VII. Starter(s)					
A. Examine Contactors (hardware and operation)		Х			
B. Verify Overload Setting and Trip	3	Х			8 - 63
C. Test Electrical Connections	4	Х			9. 00
VIII. Optional Controls		a - a		5	ci 23
A. Hot Gas Bypass (verify operation)		X			

Daikin Applied Training and Development

Now that you have made an investment in modern, efficient Daikin Applied equipment, its care should be a high priority. For training information on all Daikin Applied HVAC products, please visit us at www.DaikinApplied.com and click on Training, or call 540-248-9646 and ask for the Training Department.

Warranty

All Daikin Applied equipment is sold pursuant to its standard terms and conditions of sale, including Limited Product Warranty. Consult your local Daikin Applied representative for warranty details. To find your local Daikin Applied representative, go to www.DaikinApplied.com.

Aftermarket Services

To find your local parts office, visit www.DaikinApplied.com or call 800-37PARTS (800-377-2787). To find your local service office, visit www.DaikinApplied.com or call 800-432-1342.

This document contains the most current product information as of this printing. For the most up-to-date product information, please go to www.DaikinApplied.com.

Products manufactured in an ISO Certified Facility.